BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22724924)

  • 1. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.
    Jia Y; Huang H; Sun GX; Zhao FJ; Zhu YG
    Environ Sci Technol; 2012 Aug; 46(15):8090-6. PubMed ID: 22724924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.
    Huang H; Jia Y; Sun GX; Zhu YG
    Environ Sci Technol; 2012 Feb; 46(4):2163-8. PubMed ID: 22295880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arsenic compound amendment on arsenic speciation in rice grain.
    Arao T; Kawasaki A; Baba K; Matsumoto S
    Environ Sci Technol; 2011 Feb; 45(4):1291-7. PubMed ID: 21247103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylated arsenic species in plants originate from soil microorganisms.
    Lomax C; Liu WJ; Wu L; Xue K; Xiong J; Zhou J; McGrath SP; Meharg AA; Miller AJ; Zhao FJ
    New Phytol; 2012 Feb; 193(3):665-672. PubMed ID: 22098145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of external iron and arsenic species on chelant-enhanced iron bioavailability and arsenic uptake in rice (Oryza sativa L.).
    Rahman MA; Rahman MM; Kadohashi K; Maki T; Hasegawa H
    Chemosphere; 2011 Jul; 84(4):439-45. PubMed ID: 21507453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.
    Chen J; Sun GX; Wang XX; Lorenzo Vd; Rosen BP; Zhu YG
    Environ Sci Technol; 2014 Sep; 48(17):10337-44. PubMed ID: 25122054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings.
    Seyfferth AL; Webb SM; Andrews JC; Fendorf S
    Environ Sci Technol; 2010 Nov; 44(21):8108-13. PubMed ID: 20936818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of Dimethylarsenate to Highly Toxic Dimethylarsenite in Paddy Soil and Rice Plants.
    Chen C; Yu Y; Wang Y; Gao A; Yang B; Tang Z; Zhao FJ
    Environ Sci Technol; 2023 Jan; 57(1):822-830. PubMed ID: 36490306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice.
    Zhao FJ; Harris E; Yan J; Ma J; Wu L; Liu W; McGrath SP; Zhou J; Zhu YG
    Environ Sci Technol; 2013 Jul; 47(13):7147-54. PubMed ID: 23750559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.
    Khan KA; Stroud JL; Zhu YG; McGrath SP; Zhao FJ
    Environ Sci Technol; 2010 Nov; 44(22):8515-21. PubMed ID: 20977268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of atmospheric H
    Lin X; Li H; Ai S
    Ecotoxicol Environ Saf; 2021 Jul; 217():112100. PubMed ID: 33933890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic volatilization by Aspergillus sp. and Penicillium sp. isolated from rice rhizosphere as a promising eco-safe tool for arsenic mitigation.
    Soares Guimarães LH; Segura FR; Tonani L; von-Zeska-Kress MR; Rodrigues JL; Calixto LA; Silva FF; Batista BL
    J Environ Manage; 2019 May; 237():170-179. PubMed ID: 30784865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms.
    Zhao FJ; Zhu YG; Meharg AA
    Environ Sci Technol; 2013 May; 47(9):3957-66. PubMed ID: 23521218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.
    Lu Y; Dong F; Deacon C; Chen HJ; Raab A; Meharg AA
    Environ Pollut; 2010 May; 158(5):1536-41. PubMed ID: 20045585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water.
    Smith E; Juhasz AL; Weber J; Naidu R
    Sci Total Environ; 2008 Mar; 392(2-3):277-83. PubMed ID: 18164371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake kinetics of arsenic species in rice plants.
    Abedin MJ; Feldmann J; Meharg AA
    Plant Physiol; 2002 Mar; 128(3):1120-8. PubMed ID: 11891266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.).
    Verma S; Verma PK; Meher AK; Bansiwal AK; Tripathi RD; Chakrabarty D
    J Hazard Mater; 2018 Feb; 344():626-634. PubMed ID: 29112921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.
    Arao T; Kawasaki A; Baba K; Mori S; Matsumoto S
    Environ Sci Technol; 2009 Dec; 43(24):9361-7. PubMed ID: 20000530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.