These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 22725664)

  • 1. Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite.
    Peer CJ; Younis IR; Leonard SS; Gannett PM; Minarchick VC; Kenyon AJ; Rojanasakul Y; Callery PS
    Xenobiotica; 2012 Dec; 42(12):1170-7. PubMed ID: 22725664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1-1.
    Younis IR; Elliott M; Peer CJ; Cooper AJ; Pinto JT; Konat GW; Kraszpulski M; Petros WP; Callery PS
    J Pharmacol Exp Ther; 2008 Dec; 327(3):770-6. PubMed ID: 18791061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The busulfan metabolite EdAG irreversibly glutathionylates glutaredoxins.
    Scian M; Atkins WM
    Arch Biochem Biophys; 2015 Oct; 583():96-104. PubMed ID: 26278353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophilic reactivity of the Busulfan metabolite, EdAG, towards cellular thiols and inhibition of human thioredoxin-1.
    Hoang S; Dao N; Myers AL
    Biochem Biophys Res Commun; 2020 Dec; 533(3):325-331. PubMed ID: 32958252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of hydroxyl radical scavenging by rebamipide: identification of mono-hydroxylated rebamipide as a major reaction product.
    Sakurai K; Sasabe H; Koga T; Konishi T
    Free Radic Res; 2004 May; 38(5):487-94. PubMed ID: 15293556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical scavenging by rebamipide and related compounds: electron paramagnetic resonance study.
    Naito Y; Yoshikawa T; Tanigawa T; Sakurai K; Yamasaki K; Uchida M; Kondo M
    Free Radic Biol Med; 1995 Jan; 18(1):117-23. PubMed ID: 7896165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process.
    Sajiki J; Masumizu T
    Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S; Kotake Y; Humphries KM
    Biochemistry; 2011 Dec; 50(50):10792-803. PubMed ID: 22091587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy.
    Braga PC; Culici M; Dal Sasso M; Falchi M; Spallino A
    Pharmacology; 2010; 85(4):195-202. PubMed ID: 20215809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cr(IV)-GSH, its identification and its free hydroxyl radical generation: a model compound for Cr(VI) carcinogenicity.
    Liu KJ; Shi X; Dalal NS
    Biochem Biophys Res Commun; 1997 Jun; 235(1):54-8. PubMed ID: 9196034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates.
    Augusto O; Gatti RM; Radi R
    Arch Biochem Biophys; 1994 Apr; 310(1):118-25. PubMed ID: 8161194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glutathione on Fenton reagent-dependent radical production and DNA oxidation.
    Spear N; Aust SD
    Arch Biochem Biophys; 1995 Dec; 324(1):111-6. PubMed ID: 7503544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study.
    Gunther MR; Hanna PM; Mason RP; Cohen MS
    Arch Biochem Biophys; 1995 Jan; 316(1):515-22. PubMed ID: 7840659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESR identification of free radicals formed from the oxidation of catechol estrogens by Cu2+.
    Seacat AM; Kuppusamy P; Zweier JL; Yager JD
    Arch Biochem Biophys; 1997 Nov; 347(1):45-52. PubMed ID: 9344463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of uvalino, a new autochthonous wine, on the inhibition of the production of hydroxyl radicals.
    Bertelli A; Morelli R; Falchi M
    Drugs Exp Clin Res; 2004; 30(4):177-81. PubMed ID: 15553664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-radical scavenging capacity using the fenton reaction with rhodamine B as the spectrophotometric indicator.
    Yu F; Xu D; Lei R; Li N; Li K
    J Agric Food Chem; 2008 Feb; 56(3):730-5. PubMed ID: 18189354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction between dinitrosyl iron complexes and intermediate products of oxidative stress].
    Shumaev KB; Gubkin AA; Gubkina SA; Gudkov LL; Sviriaeva IV; Timoshin AA; Topunov AF; Vanin AF; Ruuge EK
    Biofizika; 2006; 51(3):472-7. PubMed ID: 16808346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent.
    Chang CY; Hsieh YH; Cheng KY; Hsieh LL; Cheng TC; Yao KS
    Water Sci Technol; 2008; 58(4):873-9. PubMed ID: 18776624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.