BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22725692)

  • 1. Biodegradable optode-based nanosensors for in vivo monitoring.
    Balaconis MK; Clark HA
    Anal Chem; 2012 Jul; 84(13):5787-93. PubMed ID: 22725692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer-free optode nanosensors for dynamic, reversible, and ratiometric sodium imaging in the physiological range.
    Ruckh TT; Mehta AA; Dubach JM; Clark HA
    Sci Rep; 2013 Nov; 3():3366. PubMed ID: 24284431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide).
    Tsuji H; Ishizaka T
    Int J Biol Macromol; 2001 Aug; 29(2):83-9. PubMed ID: 11518579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticizer-Free Thin-Film Sodium-Selective Optodes Inkjet-Printed on Transparent Plastic for Sweat Analysis.
    Zhang Q; Wang X; Decker V; Meyerhoff ME
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25616-25624. PubMed ID: 32426973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The design and development of fluorescent nano-optodes for in vivo glucose monitoring.
    Balaconis MK; Billingsley K; Dubach MJ; Cash KJ; Clark HA
    J Diabetes Sci Technol; 2011 Jan; 5(1):68-75. PubMed ID: 21303627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully inkjet-printed paper-based Pb
    Cui Y; Wang R; Brady B; Wang X
    Anal Bioanal Chem; 2022 Nov; 414(26):7585-7595. PubMed ID: 35997814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing.
    Xie X; Zhang W; Abbaspourrad A; Ahn J; Bader A; Bose S; Vegas A; Lin J; Tao J; Hang T; Lee H; Iverson N; Bisker G; Li L; Strano MS; Weitz DA; Anderson DG
    Nano Lett; 2017 Mar; 17(3):2015-2020. PubMed ID: 28152589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Enzymatic Phenylboronic Acid-Based Optode Membrane for Glucose Monitoring in Serums of Diabetic Patients and in the Culture Medium of Human Embryos.
    Taha MM; Rizk MS; Zayed MA; Abdel-Haleem FM; Barhoum A
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone).
    Luo H; Liu Y; Yu Z; Zhang S; Li B
    Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films.
    Olivato JB; Grossmann MV; Bilck AP; Yamashita F
    Carbohydr Polym; 2012 Sep; 90(1):159-64. PubMed ID: 24751025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosensors based on polymer vesicles and planar membranes: a short review.
    Idrissi ME; Meyer CE; Zartner L; Meier W
    J Nanobiotechnology; 2018 Aug; 16(1):63. PubMed ID: 30165853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent Luminescence Nanosensors: A Generalized Optode-Based Platform for Autofluorescence-Free Sensing in Biological Systems.
    Sodia TZ; Tetu HL; Saccomano SC; Letch EG; Branning JM; Mendonsa AA; Vyas S; Cash KJ
    ACS Sens; 2024 Jun; 9(6):3307-3315. PubMed ID: 38826054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties.
    Tan ST; Wendorff JH; Pietzonka C; Jia ZH; Wang GQ
    Chemphyschem; 2005 Aug; 6(8):1461-5. PubMed ID: 16007710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers.
    Shuai X; Wei M; Porbeni FE; Bullions TA; Tonelli AE
    Biomacromolecules; 2002; 3(1):201-7. PubMed ID: 11866574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly(ethylene oxide)/poly(epsilon-caprolactone) multiblock copolymers.
    Cohn D; Stern T; González MF; Epstein J
    J Biomed Mater Res; 2002 Feb; 59(2):273-81. PubMed ID: 11745563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosensors for Diagnosis of Infectious Diseases.
    Deng J; Zhao S; Liu Y; Liu C; Sun J
    ACS Appl Bio Mater; 2021 May; 4(5):3863-3879. PubMed ID: 35006812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes.
    Rong G; Kim EH; Qiang Y; Di W; Zhong Y; Zhao X; Fang H; Clark HA
    ACS Sens; 2018 Dec; 3(12):2499-2505. PubMed ID: 30358986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent nanoparticles for the measurement of ion concentration in biological systems.
    Dubach JM; Balaconis MK; Clark HA
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21750495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.