These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22725722)

  • 1. Study on the interzonal migration of airborne infectious particles in an isolation ward using benign bacteria.
    Leung WT; Sze-To GN; Chao CY; Yu SC; Kwan JK
    Indoor Air; 2013 Apr; 23(2):148-61. PubMed ID: 22725722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pressure differential and care provider movement on airborne infectious isolation room containment effectiveness.
    Adams NJ; Johnson DL; Lynch RA
    Am J Infect Control; 2011 Mar; 39(2):91-7. PubMed ID: 20864218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of air-handling system exhaust failure on dissemination pattern of simulant pathogen particles in a clinical biocontainment unit.
    Therkorn J; Drewry Iii D; Pilholski T; Shaw-Saliba K; Bova G; Maragakis LL; Garibaldi B; Sauer L
    Indoor Air; 2019 Jan; 29(1):143-155. PubMed ID: 30192402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room.
    Thatiparti DS; Ghia U; Mead KR
    Sci Technol Built Environ; 2016; 23(2):355-366. PubMed ID: 28736744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of portable filtration units in reducing aerosolized particles in the size range of Mycobacterium tuberculosis.
    Rutala WA; Jones SM; Worthington JM; Reist PC; Weber DJ
    Infect Control Hosp Epidemiol; 1995 Jul; 16(7):391-8. PubMed ID: 7673644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.
    Mirhoseini SH; Nikaeen M; Khanahmd H; Hatamzadeh M; Hassanzadeh A
    Ann Agric Environ Med; 2015; 22(4):670-3. PubMed ID: 26706974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of exhaled particles by ventilation and deposition in a multibed airborne infection isolation room.
    Qian H; Li Y
    Indoor Air; 2010 Aug; 20(4):284-97. PubMed ID: 20546037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An outbreak of airborne nosocomial varicella.
    Gustafson TL; Lavely GB; Brawner ER; Hutcheson RH; Wright PF; Schaffner W
    Pediatrics; 1982 Oct; 70(4):550-6. PubMed ID: 6289235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of airborne microflora in a hospital ward within a period of one year.
    Augustowska M; Dutkiewicz J
    Ann Agric Environ Med; 2006; 13(1):99-106. PubMed ID: 16841880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A performance assessment of airborne infection isolation rooms.
    Saravia SA; Raynor PC; Streifel AJ
    Am J Infect Control; 2007 Jun; 35(5):324-31. PubMed ID: 17577480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Containment testing of isolation rooms.
    Rydock JP; Eian PK
    J Hosp Infect; 2004 Jul; 57(3):228-32. PubMed ID: 15236852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional Airflow and Ventilation in Hospitals: A Case Study of Secondary Airborne Infection.
    Mousavi ES; Grosskopf KR
    Energy Procedia; 2015 Nov; 78():1201-1206. PubMed ID: 32288886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Lagrangian particle transport model to tuberculosis (TB) bacteria UV dosing in a ventilated isolation room.
    Alani A; Barton IE; Seymour MJ; Wrobel LC
    Int J Environ Health Res; 2001 Sep; 11(3):219-28. PubMed ID: 11672479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room.
    Olmsted RN
    Am J Infect Control; 2008 May; 36(4):260-7. PubMed ID: 18455046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the risk of airborne infectious disease using exhaled air.
    Issarow CM; Mulder N; Wood R
    J Theor Biol; 2015 May; 372():100-6. PubMed ID: 25702940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics.
    Sze To GN; Wan MP; Chao CY; Wei F; Yu SC; Kwan JK
    Indoor Air; 2008 Oct; 18(5):425-38. PubMed ID: 18691266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of airborne infectious diseases in aircraft cabins.
    Gupta JK; Lin CH; Chen Q
    Indoor Air; 2012 Oct; 22(5):388-95. PubMed ID: 22313168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size distribution of airborne mist and endotoxin-containing particles in metalworking fluid environments.
    Wang H; Reponen T; Lee SA; White E; Grinshpun SA
    J Occup Environ Hyg; 2007 Mar; 4(3):157-65. PubMed ID: 17237021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Containment effectiveness of expedient patient isolation units.
    Johnson DL; Lynch RA; Mead KR
    Am J Infect Control; 2009 Mar; 37(2):94-100. PubMed ID: 18926600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an empirical model to aid in designing airborne infection isolation rooms.
    Hayden CS; Earnest GS; Jensen PA
    J Occup Environ Hyg; 2007 Mar; 4(3):198-207. PubMed ID: 17237025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.