These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 22725964)

  • 1. T-cell trafficking in the central nervous system.
    Sallusto F; Impellizzieri D; Basso C; Laroni A; Uccelli A; Lanzavecchia A; Engelhardt B
    Immunol Rev; 2012 Jul; 248(1):216-27. PubMed ID: 22725964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons.
    Kleine TO; Benes L
    Cytometry A; 2006 Mar; 69(3):147-51. PubMed ID: 16479603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple sclerosis: a complicated picture of autoimmunity.
    McFarland HF; Martin R
    Nat Immunol; 2007 Sep; 8(9):913-9. PubMed ID: 17712344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IFN-γ-dependent activation of the brain's choroid plexus for CNS immune surveillance and repair.
    Kunis G; Baruch K; Rosenzweig N; Kertser A; Miller O; Berkutzki T; Schwartz M
    Brain; 2013 Nov; 136(Pt 11):3427-40. PubMed ID: 24088808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues.
    Villares R; Cadenas V; Lozano M; Almonacid L; Zaballos A; Martínez-A C; Varona R
    Eur J Immunol; 2009 Jun; 39(6):1671-81. PubMed ID: 19499521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dendritic cells in central nervous system autoimmunity.
    Sie C; Korn T
    Semin Immunopathol; 2017 Feb; 39(2):99-111. PubMed ID: 27888330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cells in multiple sclerosis.
    Severson C; Hafler DA
    Results Probl Cell Differ; 2010; 51():75-98. PubMed ID: 19582415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases.
    Pedemonte E; Mancardi G; Giunti D; Corcione A; Benvenuto F; Pistoia V; Uccelli A
    Pharmacol Ther; 2006 Sep; 111(3):555-66. PubMed ID: 16442633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system.
    Prinz M; Schmidt H; Mildner A; Knobeloch KP; Hanisch UK; Raasch J; Merkler D; Detje C; Gutcher I; Mages J; Lang R; Martin R; Gold R; Becher B; Brück W; Kalinke U
    Immunity; 2008 May; 28(5):675-86. PubMed ID: 18424188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis.
    Ortler S; Leder C; Mittelbronn M; Zozulya AL; Knolle PA; Chen L; Kroner A; Wiendl H
    Eur J Immunol; 2008 Jun; 38(6):1734-44. PubMed ID: 18421793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into adaptive immunity in chronic neuroinflammation.
    Siffrin V; Brandt AU; Herz J; Zipp F
    Adv Immunol; 2007; 96():1-40. PubMed ID: 17981203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system.
    Larochelle C; Cayrol R; Kebir H; Alvarez JI; Lécuyer MA; Ifergan I; Viel É; Bourbonnière L; Beauseigle D; Terouz S; Hachehouche L; Gendron S; Poirier J; Jobin C; Duquette P; Flanagan K; Yednock T; Arbour N; Prat A
    Brain; 2012 Oct; 135(Pt 10):2906-24. PubMed ID: 22975388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human CD4
    Nishihara H; Soldati S; Mossu A; Rosito M; Rudolph H; Muller WA; Latorre D; Sallusto F; Sospedra M; Martin R; Ishikawa H; Tenenbaum T; Schroten H; Gosselet F; Engelhardt B
    Fluids Barriers CNS; 2020 Feb; 17(1):3. PubMed ID: 32008573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis.
    Schneider-Hohendorf T; Stenner MP; Weidenfeller C; Zozulya AL; Simon OJ; Schwab N; Wiendl H
    Eur J Immunol; 2010 Dec; 40(12):3581-90. PubMed ID: 21108477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma.
    Archambault AS; Sim J; Gimenez MA; Russell JH
    Eur J Immunol; 2005 Apr; 35(4):1076-85. PubMed ID: 15761850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central nervous system: a modified immune surveillance circuit?
    Romo-González T; Chavarría A; Pérez-H J
    Brain Behav Immun; 2012 Aug; 26(6):823-9. PubMed ID: 22310920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study.
    Vercellino M; Votta B; Condello C; Piacentino C; Romagnolo A; Merola A; Capello E; Mancardi GL; Mutani R; Giordana MT; Cavalla P
    J Neuroimmunol; 2008 Aug; 199(1-2):133-41. PubMed ID: 18539342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis.
    Korn T; Mitsdoerffer M; Kuchroo VK
    Results Probl Cell Differ; 2010; 51():43-74. PubMed ID: 19513635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human immune studies in multiple sclerosis.
    Bar-Or A
    Adv Neurol; 2006; 98():91-109. PubMed ID: 16400829
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.