These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 22726433)

  • 1. RNA polymerase backtracking in gene regulation and genome instability.
    Nudler E
    Cell; 2012 Jun; 149(7):1438-45. PubMed ID: 22726433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking RNA polymerase backtracking to genome instability in E. coli.
    Dutta D; Shatalin K; Epshtein V; Gottesman ME; Nudler E
    Cell; 2011 Aug; 146(4):533-43. PubMed ID: 21854980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications.
    Imashimizu M; Shimamoto N; Oshima T; Kashlev M
    Transcription; 2014; 5(1):e28285. PubMed ID: 25764114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of RNA-polymerase behavior considering the backtracking state.
    Kor R; Mohammad-Rafiee F
    Soft Matter; 2022 Aug; 18(32):5979-5988. PubMed ID: 35920142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backtracking dynamics of RNA polymerase: pausing and error correction.
    Sahoo M; Klumpp S
    J Phys Condens Matter; 2013 Sep; 25(37):374104. PubMed ID: 23945272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural transitions in the transcription elongation complexes of bacterial RNA polymerase during σ-dependent pausing.
    Zhilina E; Esyunina D; Brodolin K; Kulbachinskiy A
    Nucleic Acids Res; 2012 Apr; 40(7):3078-91. PubMed ID: 22140106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Observation of Backtracking by Bacterial RNA Polymerase.
    Lass-Napiorkowska A; Heyduk T
    Biochemistry; 2016 Feb; 55(4):647-58. PubMed ID: 26745324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase and the ribosome: the close relationship.
    McGary K; Nudler E
    Curr Opin Microbiol; 2013 Apr; 16(2):112-7. PubMed ID: 23433801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences.
    Imashimizu M; Afek A; Takahashi H; Lubkowska L; Lukatsky DB
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7409-E7417. PubMed ID: 27830653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pause & go: from the discovery of RNA polymerase pausing to its functional implications.
    Mayer A; Landry HM; Churchman LS
    Curr Opin Cell Biol; 2017 Jun; 46():72-80. PubMed ID: 28363125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conflict Resolution in the Genome: How Transcription and Replication Make It Work.
    Hamperl S; Cimprich KA
    Cell; 2016 Dec; 167(6):1455-1467. PubMed ID: 27912056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest.
    Stevenson-Jones F; Woodgate J; Castro-Roa D; Zenkin N
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8462-8467. PubMed ID: 32238560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck.
    Wiedermannová J; Krásný L
    Nucleic Acids Res; 2021 Oct; 49(18):10221-10234. PubMed ID: 34551438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified model of transcription elongation: what have we learned from single-molecule experiments?
    Ó Maoiléidigh D; Tadigotla VR; Nudler E; Ruckenstein AE
    Biophys J; 2011 Mar; 100(5):1157-66. PubMed ID: 21354388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Persistence of backtracking by human RNA polymerase II.
    Yang KB; Rasouly A; Epshtein V; Martinez C; Nguyen T; Shamovsky I; Nudler E
    Mol Cell; 2024 Mar; 84(5):897-909.e4. PubMed ID: 38340716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
    Decker KB; Hinton DM
    Annu Rev Microbiol; 2013; 67():113-39. PubMed ID: 23768203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional pausing without backtracking.
    Landick R
    Proc Natl Acad Sci U S A; 2009 Jun; 106(22):8797-8. PubMed ID: 19470457
    [No Abstract]   [Full Text] [Related]  

  • 18. Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate.
    Sheridan RM; Fong N; D'Alessandro A; Bentley DL
    Mol Cell; 2019 Jan; 73(1):107-118.e4. PubMed ID: 30503775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible roles of σ-dependent RNA polymerase pausing in transcription regulation.
    Petushkov I; Esyunina D; Kulbachinskiy A
    RNA Biol; 2017 Dec; 14(12):1678-1682. PubMed ID: 28816625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription termination control in bacteria.
    Henkin TM
    Curr Opin Microbiol; 2000 Apr; 3(2):149-53. PubMed ID: 10745002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.