These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 22726433)

  • 21. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates.
    Gabizon R; Lee A; Vahedian-Movahed H; Ebright RH; Bustamante CJ
    Nat Commun; 2018 Jul; 9(1):2930. PubMed ID: 30050038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing.
    Perdue SA; Roberts JW
    Mol Microbiol; 2010 Nov; 78(3):636-50. PubMed ID: 21382107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modular Organization of the NusA- and NusG-Stimulated RNA Polymerase Pause Signal That Participates in the Bacillus subtilis trp Operon Attenuation Mechanism.
    Mondal S; Yakhnin AV; Babitzke P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28507243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of backtracking long pauses of RNA polymerase.
    Xie P
    Biochim Biophys Acta; 2009 Mar; 1789(3):212-9. PubMed ID: 19101661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria.
    Kotlajich MV; Hron DR; Boudreau BA; Sun Z; Lyubchenko YL; Landick R
    Elife; 2015 Jan; 4():. PubMed ID: 25594903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of eukaryotic transcription termination at a glance.
    Xie J; Libri D; Porrua O
    J Cell Sci; 2023 Jan; 136(1):. PubMed ID: 36594557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier.
    Jin J; Bai L; Johnson DS; Fulbright RM; Kireeva ML; Kashlev M; Wang MD
    Nat Struct Mol Biol; 2010 Jun; 17(6):745-52. PubMed ID: 20453861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of Transcriptional Pausing in Bacteria.
    Kang JY; Mishanina TV; Landick R; Darst SA
    J Mol Biol; 2019 Sep; 431(20):4007-4029. PubMed ID: 31310765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dynamic model for processive transcription elongation and backtracking long pauses by multisubunit RNA polymerases.
    Xie P
    Proteins; 2012 Aug; 80(8):2020-34. PubMed ID: 22488837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase.
    Nudler E; Mustaev A; Lukhtanov E; Goldfarb A
    Cell; 1997 Apr; 89(1):33-41. PubMed ID: 9094712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active site closure stabilizes the backtracked state of RNA polymerase.
    Turtola M; Mäkinen JJ; Belogurov GA
    Nucleic Acids Res; 2018 Nov; 46(20):10870-10887. PubMed ID: 30256972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase.
    Davenport RJ; Wuite GJ; Landick R; Bustamante C
    Science; 2000 Mar; 287(5462):2497-500. PubMed ID: 10741971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking.
    Neuman KC; Abbondanzieri EA; Landick R; Gelles J; Block SM
    Cell; 2003 Nov; 115(4):437-47. PubMed ID: 14622598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription factor regulation of RNA polymerase's torque generation capacity.
    Ma J; Tan C; Gao X; Fulbright RM; Roberts JW; Wang MD
    Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2583-2588. PubMed ID: 30635423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis.
    Huang YH; Hilal T; Loll B; Bürger J; Mielke T; Böttcher C; Said N; Wahl MC
    Mol Cell; 2020 Sep; 79(6):1024-1036.e5. PubMed ID: 32871103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NusG inhibits RNA polymerase backtracking by stabilizing the minimal transcription bubble.
    Turtola M; Belogurov GA
    Elife; 2016 Oct; 5():. PubMed ID: 27697152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription-associated genome instability.
    Gaillard H; Herrera-Moyano E; Aguilera A
    Chem Rev; 2013 Nov; 113(11):8638-61. PubMed ID: 23597121
    [No Abstract]   [Full Text] [Related]  

  • 39. RNA polymerase: the vehicle of transcription.
    Borukhov S; Nudler E
    Trends Microbiol; 2008 Mar; 16(3):126-34. PubMed ID: 18280161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermittent transcription dynamics for the rapid production of long transcripts of high fidelity.
    Depken M; Parrondo JM; Grill SW
    Cell Rep; 2013 Oct; 5(2):521-30. PubMed ID: 24120867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.