These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 22726547)

  • 1. Proteasome inhibitors and bone disease.
    Qiang YW; Heuck CJ; Shaughnessy JD; Barlogie B; Epstein J
    Semin Hematol; 2012 Jul; 49(3):243-8. PubMed ID: 22726547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Proteasome and Myeloma-Associated Bone Disease.
    Accardi F; Toscani D; Costa F; Aversa F; Giuliani N
    Calcif Tissue Int; 2018 Feb; 102(2):210-226. PubMed ID: 29080972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling.
    Accardi F; Toscani D; Bolzoni M; Dalla Palma B; Aversa F; Giuliani N
    Biomed Res Int; 2015; 2015():172458. PubMed ID: 26579531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway.
    Yang Y; Blair HC; Shapiro IM; Wang B
    J Biol Chem; 2015 Jul; 290(27):16918-28. PubMed ID: 25979341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects.
    Hurchla MA; Garcia-Gomez A; Hornick MC; Ocio EM; Li A; Blanco JF; Collins L; Kirk CJ; Piwnica-Worms D; Vij R; Tomasson MH; Pandiella A; San Miguel JF; Garayoa M; Weilbaecher KN
    Leukemia; 2013 Feb; 27(2):430-40. PubMed ID: 22763387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin, bone regulation and the ubiquitin-proteasome connection: A review.
    Vriend J; Reiter RJ
    Life Sci; 2016 Jan; 145():152-60. PubMed ID: 26706287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloma bone disease.
    Sezer O
    Hematology; 2005; 10 Suppl 1():19-24. PubMed ID: 16188625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blocking of the Ubiquitin-Proteasome System Prevents Inflammation-Induced Bone Loss by Accelerating M-CSF Receptor c-Fms Degradation in Osteoclast Differentiation.
    Lee K; Kim MY; Ahn H; Kim HS; Shin HI; Jeong D
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28946669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse treatment with the proteasome inhibitor bortezomib inhibits osteoclast resorptive activity in clinically relevant conditions.
    Boissy P; Andersen TL; Lund T; Kupisiewicz K; Plesner T; Delaissé JM
    Leuk Res; 2008 Nov; 32(11):1661-8. PubMed ID: 18394701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthopaedics: Structural support.
    Berglund J
    Nature; 2011 Dec; 480(7377):S56-7. PubMed ID: 22169807
    [No Abstract]   [Full Text] [Related]  

  • 11. Impact of bortezomib on bone health in myeloma: a review of current evidence.
    Zangari M; Terpos E; Zhan F; Tricot G
    Cancer Treat Rev; 2012 Dec; 38(8):968-80. PubMed ID: 22226939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis and management of myeloma bone disease.
    Christoulas D; Terpos E; Dimopoulos MA
    Expert Rev Hematol; 2009 Aug; 2(4):385-98. PubMed ID: 21082944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasome inhibitors abrogate osteoclast differentiation and osteoclast function.
    Zavrski I; Krebbel H; Wildemann B; Heider U; Kaiser M; Possinger K; Sezer O
    Biochem Biophys Res Commun; 2005 Jul; 333(1):200-5. PubMed ID: 15936724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preclinical activity of the oral proteasome inhibitor MLN9708 in Myeloma bone disease.
    Garcia-Gomez A; Quwaider D; Canavese M; Ocio EM; Tian Z; Blanco JF; Berger AJ; Ortiz-de-Solorzano C; Hernández-Iglesias T; Martens AC; Groen RW; Mateo-Urdiales J; Fraile S; Galarraga M; Chauhan D; San Miguel JF; Raje N; Garayoa M
    Clin Cancer Res; 2014 Mar; 20(6):1542-54. PubMed ID: 24486586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of preferential bone formation in myeloma bone lesions by proteasome inhibitors.
    Nakaue E; Teramachi J; Tenshin H; Hiasa M; Harada T; Oda A; Inoue Y; Shimizu S; Higa Y; Sogabe K; Oura M; Hara T; Sumitani R; Maruhashi T; Yamagami H; Endo I; Tanaka E; Abe M
    Int J Hematol; 2023 Jul; 118(1):88-98. PubMed ID: 37039914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on mechanism underlying bone damage in myeloma--review].
    Zhou LL
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2007 Dec; 15(6):1340-4. PubMed ID: 18088497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological aspects of altered bone remodeling in multiple myeloma and possibilities of pharmacological intervention.
    Kupisiewicz K
    Dan Med Bull; 2011 May; 58(5):B4277. PubMed ID: 21535989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma.
    Qiang YW; Chen Y; Stephens O; Brown N; Chen B; Epstein J; Barlogie B; Shaughnessy JD
    Blood; 2008 Jul; 112(1):196-207. PubMed ID: 18305214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone disease in multiple myeloma.
    Hjertner Ø; Standal T; Børset M; Sundan A; Waage A
    Med Oncol; 2006; 23(4):431-41. PubMed ID: 17303901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system.
    Liu XH; Kirschenbaum A; Yao S; Levine AC
    Endocrinology; 2005 Apr; 146(4):1991-8. PubMed ID: 15618359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.