These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22726810)

  • 1. RFCRYS: sequence-based protein crystallization propensity prediction by means of random forest.
    Jahandideh S; Mahdavi A
    J Theor Biol; 2012 Aug; 306():115-9. PubMed ID: 22726810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta prediction of protein crystallization propensity.
    Mizianty MJ; Kurgan L
    Biochem Biophys Res Commun; 2009 Dec; 390(1):10-5. PubMed ID: 19755114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will my protein crystallize? A sequence-based predictor.
    Smialowski P; Schmidt T; Cox J; Kirschner A; Frishman D
    Proteins; 2006 Feb; 62(2):343-55. PubMed ID: 16315316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein crystallization using collocation of amino acid pairs.
    Chen K; Kurgan L; Rahbari M
    Biochem Biophys Res Commun; 2007 Apr; 355(3):764-9. PubMed ID: 17316561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein crystallizability.
    Smialowski P; Frishman D
    Methods Mol Biol; 2010; 609():385-400. PubMed ID: 20221931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crysalis: an integrated server for computational analysis and design of protein crystallization.
    Wang H; Feng L; Zhang Z; Webb GI; Lin D; Song J
    Sci Rep; 2016 Feb; 6():21383. PubMed ID: 26906024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the protein structural class by specific peptide frequencies.
    Costantini S; Facchiano AM
    Biochimie; 2009 Feb; 91(2):226-9. PubMed ID: 18957316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life in the fast lane for protein crystallization and X-ray crystallography.
    Pusey ML; Liu ZJ; Tempel W; Praissman J; Lin D; Wang BC; Gavira JA; Ng JD
    Prog Biophys Mol Biol; 2005 Jul; 88(3):359-86. PubMed ID: 15652250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs.
    Charoenkwan P; Shoombuatong W; Lee HC; Chaijaruwanich J; Huang HL; Ho SY
    PLoS One; 2013; 8(9):e72368. PubMed ID: 24019868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survey of Predictors of Propensity for Protein Production and Crystallization with Application to Predict Resolution of Crystal Structures.
    Gao J; Wu Z; Hu G; Wang K; Song J; Joachimiak A; Kurgan L
    Curr Protein Pept Sci; 2018; 19(2):200-210. PubMed ID: 28933304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein disorder.
    Dosztányi Z; Tompa P
    Methods Mol Biol; 2008; 426():103-15. PubMed ID: 18542859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting three-dimensional structure of protein fragments from dihedral angle propensities and molecular dynamics.
    Blayney JK; Ojha PC; Shapcott M
    Int J Comput Biol Drug Des; 2010; 3(2):146-63. PubMed ID: 20852338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRYSTALP2: sequence-based protein crystallization propensity prediction.
    Kurgan L; Razib AA; Aghakhani S; Dick S; Mizianty M; Jahandideh S
    BMC Struct Biol; 2009 Jul; 9():50. PubMed ID: 19646256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVMCRYS: an SVM approach for the prediction of protein crystallization propensity from protein sequence.
    Kandaswamy KK; Pugalenthi G; Suganthan PN; Gangal R
    Protein Pept Lett; 2010 Apr; 17(4):423-30. PubMed ID: 20044918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection.
    Wang H; Wang M; Tan H; Li Y; Zhang Z; Song J
    PLoS One; 2014; 9(8):e105902. PubMed ID: 25148528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction and analysis of protein γ-carboxylation sites based on a random forest method.
    Zhang N; Li BQ; Gao S; Ruan JS; Cai YD
    Mol Biosyst; 2012 Nov; 8(11):2946-55. PubMed ID: 22918520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate multistage prediction of protein crystallization propensity using deep-cascade forest with sequence-based features.
    Zhu YH; Hu J; Ge F; Li F; Song J; Zhang Y; Yu DJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32436937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.