These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1006 related articles for article (PubMed ID: 22727356)

  • 41. Comparison of premolar cuspal deflection in bulk or in incremental composite restoration methods.
    Kim ME; Park SH
    Oper Dent; 2011; 36(3):326-34. PubMed ID: 21827222
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial.
    Lotfi L; Javadpour J; Naimi-Jamal MR
    Biomed Mater Eng; 2018; 29(3):369-387. PubMed ID: 29578464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A method to investigate the shrinkage stress developed by resin-composites bonded to a single flat surface.
    Pabis LV; Xavier TA; Rosa EF; Rodrigues FP; Meira JB; Lima RG; Rodrigues Filho LE; Ballester RY
    Dent Mater; 2012 Apr; 28(4):e27-34. PubMed ID: 22336142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effect of filler system on the mechanical properties of light-cured composite resins. I. Effect of various types of silica fillers on the mechanical properties of the composite resins].
    Kawaguchi M; Fukushima T; Horibe T; Watanabe T
    Shika Zairyo Kikai; 1989 Mar; 8(2):174-9. PubMed ID: 2557683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data.
    Magne P
    Dent Mater; 2007 May; 23(5):539-48. PubMed ID: 16730058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel.
    Willems G; Celis JP; Lambrechts P; Braem M; Vanherle G
    J Biomed Mater Res; 1993 Jun; 27(6):747-55. PubMed ID: 8408104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the design of dental resin-based composites: a micromechanical approach.
    Kahler B; Kotousov A; Swain MV
    Acta Biomater; 2008 Jan; 4(1):165-72. PubMed ID: 17881310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new method to measure the polymerization shrinkage kinetics of composites using a particle tracking method with computer vision.
    Lee IB; Min SH; Seo DG
    Dent Mater; 2012 Feb; 28(2):212-8. PubMed ID: 22032934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical properties of computer-aided design/computer-aided manufacturing resin composites assuming perfect silane coupling using in silico homogenization of cryo-electron microscopy images.
    Lee C; Yamaguchi S; Ohta K; Imazato S
    J Prosthodont Res; 2019 Jan; 63(1):90-94. PubMed ID: 30529229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of dental restorative material properties on bond interface reliability: a finite element analysis.
    Zhao YT; Zhang YM; Hou SX; Kong L; Lin J; Zhao YM; Huo N
    Chin Med J (Engl); 2013 Mar; 126(5):879-83. PubMed ID: 23489795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of filler content on bending properties of dental composites: numerical simulation with the use of the finite-element method.
    Tanimoto Y; Nishiwaki T; Nemoto K; Ben G
    J Biomed Mater Res B Appl Biomater; 2004 Oct; 71(1):188-95. PubMed ID: 15368244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of filler size and shape on local nanoindentation modulus of resin-composites.
    Masouras K; Akhtar R; Watts DC; Silikas N
    J Mater Sci Mater Med; 2008 Dec; 19(12):3561-6. PubMed ID: 18626748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.
    Gleadall A; Pan J; Kruft MA
    J Mech Behav Biomed Mater; 2015 Nov; 51():237-47. PubMed ID: 26275486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Material parameters of the reindeer antler for use in dental implant biomechanics.
    Hasan I; Keilig L; Reimann S; Rahimi A; Wahl G; Bourauel C
    Ann Anat; 2012 Nov; 194(6):518-23. PubMed ID: 22429868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient prediction of the packing density of inorganic fillers in dental resin composites for excellent properties.
    Niu H; Yang DL; Gao T; Wang JX
    Dent Mater; 2021 Dec; 37(12):1806-1818. PubMed ID: 34565583
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stochastic Finite Element Analysis Framework for Modelling Mechanical Properties of Particulate Modified Polymer Composites.
    Ahmadi Moghaddam H; Mertiny P
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31470532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poisson's ratio of bovine meniscus determined combining unconfined and confined compression.
    Danso EK; Julkunen P; Korhonen RK
    J Biomech; 2018 Aug; 77():233-237. PubMed ID: 30055840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of the lining material, thickness and coverage on residual stress of class II molar restorations by multilayer technique.
    Sun T; Shao B; Liu Z
    Comput Methods Programs Biomed; 2021 Apr; 202():105995. PubMed ID: 33592326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.
    Choi AP; Zheng YP
    Med Biol Eng Comput; 2005 Mar; 43(2):258-64. PubMed ID: 15865137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The two sides of the C-factor.
    Fok ASL; Aregawi WA
    Dent Mater; 2018 Apr; 34(4):649-656. PubMed ID: 29398111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.