These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A strategy for in vitro safety testing of nanotitania-modified textile products. Roszak J; Stępnik M; Nocuń M; Ferlińska M; Smok-Pieniążek A; Grobelny J; Tomaszewska E; Wąsowicz W; Cieślak M J Hazard Mater; 2013 Jul; 256-257():67-75. PubMed ID: 23669792 [TBL] [Abstract][Full Text] [Related]
24. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Musee N; Thwala M; Nota N J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709 [TBL] [Abstract][Full Text] [Related]
25. Achieving Control of Occupational Exposures to Engineered Nanomaterials. Juric A; Meldrum R; Liberda EN J Occup Environ Hyg; 2015; 12(8):501-8. PubMed ID: 25635953 [TBL] [Abstract][Full Text] [Related]
26. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials. Hristozov D; Zabeo A; Alstrup Jensen K; Gottardo S; Isigonis P; Maccalman L; Critto A; Marcomini A Nanotoxicology; 2016 Nov; 10(9):1215-28. PubMed ID: 26853193 [TBL] [Abstract][Full Text] [Related]
27. A pilot study of workplace dermal exposures to cypermethrin at a chemical manufacturing plant. Buckley TJ; Geer LA; Connor TH; Robertson S; Sammons D; Smith J; Snawder J; Boeniger M J Occup Environ Hyg; 2011 Oct; 8(10):600-8. PubMed ID: 21936699 [TBL] [Abstract][Full Text] [Related]
28. Identification of dermal exposure pathways in the rubber manufacturing industry. Vermeulen R; Heideman J; Bos RP; Kromhout H Ann Occup Hyg; 2000 Oct; 44(7):533-41. PubMed ID: 11042256 [TBL] [Abstract][Full Text] [Related]
29. An occupational hygiene investigation of exposure to acrylamide and the role for urinary S-carboxyethyl-cysteine (CEC) as a biological marker. Bull PJ; Brooke RK; Cocker J; Jones K; Warren N Ann Occup Hyg; 2005 Nov; 49(8):683-90. PubMed ID: 16141254 [TBL] [Abstract][Full Text] [Related]
30. Risk management frameworks for human health and environmental risks. Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953 [TBL] [Abstract][Full Text] [Related]
31. Survey assessment of worker dermal exposure and underlying behavioral determinants. Geer LA; Anna D; Curbow B; Diener-West M; de Joode Bv; Mitchell C; Buckley TJ J Occup Environ Hyg; 2007 Nov; 4(11):809-20. PubMed ID: 17846926 [TBL] [Abstract][Full Text] [Related]
32. Risks to health care workers from nano-enabled medical products. Murashov V; Howard J J Occup Environ Hyg; 2015; 12(6):D75-85. PubMed ID: 25950806 [TBL] [Abstract][Full Text] [Related]
33. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health--lessons learned from four case studies. Aschberger K; Micheletti C; Sokull-Klüttgen B; Christensen FM Environ Int; 2011 Aug; 37(6):1143-56. PubMed ID: 21397332 [TBL] [Abstract][Full Text] [Related]
34. An Exploratory Assessment of Applying Risk Management Practices to Engineered Nanomaterials. Iavicoli I; Leso V; Piacci M; Cioffi DL; Guseva Canu I; Schulte PA Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31500229 [TBL] [Abstract][Full Text] [Related]
35. Exposure limit values for nanomaterials--capacity and willingness of users to apply a precautionary approach. van Broekhuizen P; Dorbeck-Jung B J Occup Environ Hyg; 2013; 10(1):46-53. PubMed ID: 23216200 [TBL] [Abstract][Full Text] [Related]
36. Dermal uptake and excretion of 4,4'-methylenedianiline during rotor blade production in helicopter industry--an intervention study. Weiss T; Schuster H; Müller J; Schaller KH; Drexler H; Angerer J; Käfferlein HU Ann Occup Hyg; 2011 Oct; 55(8):886-92. PubMed ID: 21841153 [TBL] [Abstract][Full Text] [Related]
37. Nanomaterials and lung toxicity: interactions with airways cells and relevance for occupational health risk assessment. Bergamaschi E; Bussolati O; Magrini A; Bottini M; Migliore L; Bellucci S; Iavicoli I; Bergamaschi A Int J Immunopathol Pharmacol; 2006; 19(4 Suppl):3-10. PubMed ID: 17291399 [TBL] [Abstract][Full Text] [Related]
38. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Paik SY; Zalk DM; Swuste P Ann Occup Hyg; 2008 Aug; 52(6):419-28. PubMed ID: 18632731 [TBL] [Abstract][Full Text] [Related]
39. Nanomaterial translocation--the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs--a review. Kermanizadeh A; Balharry D; Wallin H; Loft S; Møller P Crit Rev Toxicol; 2015; 45(10):837-72. PubMed ID: 26140391 [TBL] [Abstract][Full Text] [Related]
40. Progress in the characterization and safety evaluation of engineered inorganic nanomaterials in food. Wang H; Du LJ; Song ZM; Chen XX Nanomedicine (Lond); 2013 Dec; 8(12):2007-25. PubMed ID: 24279490 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]