BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 22727665)

  • 1. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex.
    Udagawa T; Swanger SA; Takeuchi K; Kim JH; Nalavadi V; Shin J; Lorenz LJ; Zukin RS; Bassell GJ; Richter JD
    Mol Cell; 2012 Jul; 47(2):253-66. PubMed ID: 22727665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation.
    Burns DM; D'Ambrogio A; Nottrott S; Richter JD
    Nature; 2011 May; 473(7345):105-8. PubMed ID: 21478871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II.
    Atkins CM; Nozaki N; Shigeri Y; Soderling TR
    J Neurosci; 2004 Jun; 24(22):5193-201. PubMed ID: 15175389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncanonical cytoplasmic poly(A) polymerases regulate RNA levels, alternative RNA processing, and synaptic plasticity but not hippocampal-dependent behaviours.
    Mansur F; Alarcon JM; Stackpole EE; Wang R; Richter JD
    RNA Biol; 2021 Jul; 18(7):962-971. PubMed ID: 32954964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertebrate GLD2 poly(A) polymerases in the germline and the brain.
    Rouhana L; Wang L; Buter N; Kwak JE; Schiltz CA; Gonzalez T; Kelley AE; Landry CF; Wickens M
    RNA; 2005 Jul; 11(7):1117-30. PubMed ID: 15987818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus.
    Zearfoss NR; Alarcon JM; Trifilieff P; Kandel E; Richter JD
    J Neurosci; 2008 Aug; 28(34):8502-9. PubMed ID: 18716208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation.
    Kim JH; Richter JD
    Mol Cell; 2006 Oct; 24(2):173-83. PubMed ID: 17052452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation.
    Atkins CM; Davare MA; Oh MC; Derkach V; Soderling TR
    J Neurosci; 2005 Jun; 25(23):5604-10. PubMed ID: 15944388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene.
    Alarcon JM; Hodgman R; Theis M; Huang YS; Kandel ER; Richter JD
    Learn Mem; 2004; 11(3):318-27. PubMed ID: 15169862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein.
    Jung MY; Lorenz L; Richter JD
    Mol Cell Biol; 2006 Jun; 26(11):4277-87. PubMed ID: 16705177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules.
    Ohashi R; Shiina N
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31978946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation of dendritic mRNA transport by CPEB.
    Huang YS; Carson JH; Barbarese E; Richter JD
    Genes Dev; 2003 Mar; 17(5):638-53. PubMed ID: 12629046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDNF-induced local protein synthesis and synaptic plasticity.
    Leal G; Comprido D; Duarte CB
    Neuropharmacology; 2014 Jan; 76 Pt C():639-56. PubMed ID: 23602987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation.
    Barnard DC; Ryan K; Manley JL; Richter JD
    Cell; 2004 Nov; 119(5):641-51. PubMed ID: 15550246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musashi protein-directed translational activation of target mRNAs is mediated by the poly(A) polymerase, germ line development defective-2.
    Cragle C; MacNicol AM
    J Biol Chem; 2014 May; 289(20):14239-51. PubMed ID: 24644291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses.
    Wu L; Wells D; Tay J; Mendis D; Abbott MA; Barnitt A; Quinlan E; Heynen A; Fallon JR; Richter JD
    Neuron; 1998 Nov; 21(5):1129-39. PubMed ID: 9856468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory.
    Huang YS; Mendez R; Fernandez M; Richter JD
    Mol Psychiatry; 2023 Jul; 28(7):2728-2736. PubMed ID: 37131078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nuclear experience of CPEB: implications for RNA processing and translational control.
    Lin CL; Evans V; Shen S; Xing Y; Richter JD
    RNA; 2010 Feb; 16(2):338-48. PubMed ID: 20040591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-methyl-D-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses.
    Huang YS; Jung MY; Sarkissian M; Richter JD
    EMBO J; 2002 May; 21(9):2139-48. PubMed ID: 11980711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
    Stebbins-Boaz B; Hake LE; Richter JD
    EMBO J; 1996 May; 15(10):2582-92. PubMed ID: 8665866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.