BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 22728174)

  • 1. Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to Nannochloropsis oculata microalgae culture.
    Valdés FJ; Hernández MR; Catalá L; Marcilla A
    Bioresour Technol; 2012 Sep; 119():1-6. PubMed ID: 22728174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank.
    Chai X; Zhao X
    Bioresour Technol; 2012 Jul; 116():360-5. PubMed ID: 22531167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors.
    López MC; Sánchez Edel R; López JL; Fernández FG; Sevilla JM; Rivas J; Guerrero MG; Grima EM
    J Biotechnol; 2006 May; 123(3):329-42. PubMed ID: 16406158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.
    Honda R; Boonnorat J; Chiemchaisri C; Chiemchaisri W; Yamamoto K
    Bioresour Technol; 2012 Dec; 125():59-64. PubMed ID: 23023237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.
    Kargupta W; Ganesh A; Mukherji S
    Bioresour Technol; 2015 Mar; 180():370-5. PubMed ID: 25616748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth.
    Huang CC; Hung JJ; Peng SH; Chen CN
    Bioresour Technol; 2012 May; 112():228-33. PubMed ID: 22414576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CO₂ Concentration and pH on Mixotrophic Growth of Nannochloropsis oculata.
    Razzak SA; Ilyas M; Ali SA; Hossain MM
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1290-302. PubMed ID: 25926014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear predictive control for maximization of CO₂ bio-fixation by microalgae in a photobioreactor.
    Tebbani S; Lopes F; Filali R; Dumur D; Pareau D
    Bioprocess Biosyst Eng; 2014 Jan; 37(1):83-97. PubMed ID: 23515629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications.
    Quinn JC; Yates T; Douglas N; Weyer K; Butler J; Bradley TH; Lammers PJ
    Bioresour Technol; 2012 Aug; 117():164-71. PubMed ID: 22613892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic model of microalgal production in tubular photobioreactors.
    Fernández I; Acién FG; Fernández JM; Guzmán JL; Magán JJ; Berenguel M
    Bioresour Technol; 2012 Dec; 126():172-81. PubMed ID: 23073105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.
    Guo Z; Phooi WBA; Lim ZJ; Tong YW
    Bioresour Technol; 2015 Jun; 186():238-245. PubMed ID: 25817035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using carbon dioxide to maintain an elevated oleaginous microalga concentration in mixed-culture photo-bioreactors.
    Giannetto MJ; Retotar A; Rismani-Yazdi H; Peccia J
    Bioresour Technol; 2015 Jun; 185():178-84. PubMed ID: 25768421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.
    Hindersin S; Leupold M; Kerner M; Hanelt D
    Bioprocess Biosyst Eng; 2013 Mar; 36(3):345-55. PubMed ID: 22847362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer.
    Putt R; Singh M; Chinnasamy S; Das KC
    Bioresour Technol; 2011 Feb; 102(3):3240-5. PubMed ID: 21123050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation of Green Microalgae in Bubble Column Photobioreactors and an Assay for Neutral Lipids.
    Wang Q; Peng H; Higgins BT
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ethanol production with starch-based Tetraselmis subcordiformis grown with CO2 produced during ethanol fermentation].
    Liao S; Yao C; Xue S; Zhang W; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1292-8. PubMed ID: 22117512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time light intensity based carbon dioxide feeding for high cell-density microalgae cultivation and biodiesel production in a bubble column photobioreactor under outdoor natural sunlight.
    Naira VR; Das D; Maiti SK
    Bioresour Technol; 2019 Jul; 284():43-55. PubMed ID: 30925422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae.
    Xue S; Zhang Q; Wu X; Yan C; Cong W
    Bioresour Technol; 2013 Jun; 138():141-7. PubMed ID: 23612173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incremental energy supply for microalgae culture in a photobioreactor.
    Das P; Obbard JP
    Bioresour Technol; 2011 Feb; 102(3):2973-8. PubMed ID: 21071210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.