These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22728192)

  • 1. Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans.
    van Gool MP; van Muiswinkel GC; Hinz SW; Schols HA; Sinitsyn AP; Gruppen H
    Bioresour Technol; 2012 Sep; 119():123-32. PubMed ID: 22728192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans.
    van Gool MP; van Muiswinkel GC; Hinz SW; Schols HA; Sinitsyn AP; Gruppen H
    Enzyme Microb Technol; 2013 Jun; 53(1):25-32. PubMed ID: 23683701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting xylanase functionality in the degradation of arabinoxylans.
    Berrin JG; Juge N
    Biotechnol Lett; 2008 Jul; 30(7):1139-50. PubMed ID: 18320143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families.
    Pollet A; Delcour JA; Courtin CM
    Crit Rev Biotechnol; 2010 Sep; 30(3):176-91. PubMed ID: 20225927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial xylanases: engineering, production and industrial applications.
    Juturu V; Wu JC
    Biotechnol Adv; 2012; 30(6):1219-27. PubMed ID: 22138412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns.
    Verjans P; Dornez E; Segers M; Van Campenhout S; Bernaerts K; Beliën T; Delcour JA; Courtin CM
    J Biotechnol; 2010 Jan; 145(2):160-7. PubMed ID: 19883701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum is not a thermostabilizing domain.
    Dias FM; Goyal A; Gilbert HJ; José A M Prates ; Ferreira LM; Fontes CM
    FEMS Microbiol Lett; 2004 Sep; 238(1):71-8. PubMed ID: 15336405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GH11 xylanases: Structure/function/properties relationships and applications.
    Paës G; Berrin JG; Beaugrand J
    Biotechnol Adv; 2012; 30(3):564-92. PubMed ID: 22067746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose.
    Najmudin S; Pinheiro BA; Prates JA; Gilbert HJ; Romão MJ; Fontes CM
    J Struct Biol; 2010 Dec; 172(3):353-62. PubMed ID: 20682344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System.
    Fredriksen L; Stokke R; Jensen MS; Westereng B; Jameson JK; Steen IH; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.
    Vardakou M; Dumon C; Murray JW; Christakopoulos P; Weiner DP; Juge N; Lewis RJ; Gilbert HJ; Flint JE
    J Mol Biol; 2008 Feb; 375(5):1293-305. PubMed ID: 18078955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities.
    Sørensen HR; Pedersen S; Jørgensen CT; Meyer AS
    Biotechnol Prog; 2007; 23(1):100-7. PubMed ID: 17269676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes.
    Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase.
    Ludwiczek ML; Heller M; Kantner T; McIntosh LP
    J Mol Biol; 2007 Oct; 373(2):337-54. PubMed ID: 17822716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of a family 10 beta-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex.
    Kaneko S; Ichinose H; Fujimoto Z; Kuno A; Yura K; Go M; Mizuno H; Kusakabe I; Kobayashi H
    J Biol Chem; 2004 Jun; 279(25):26619-26. PubMed ID: 15078885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling Synergism between Various GH Family Xylanases and Debranching Enzymes during Hetero-Xylan Degradation.
    Malgas S; Mafa MS; Mathibe BN; Pletschke BI
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of binding activity of xylan-binding domain by amino acid substitution.
    Sakata T; Takakura J; Miyakubo H; Osada Y; Wada R; Takahashi H; Yatsunami R; Fukui T; Nakamura S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):253-4. PubMed ID: 17150913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2.
    St John FJ; Preston JF; Pozharski E
    J Struct Biol; 2012 Nov; 180(2):303-11. PubMed ID: 23000703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel xylanolytic triple domain enzyme targeted at feruloylated arabinoxylan degradation.
    Holck J; Djajadi DT; Brask J; Pilgaard B; Krogh KBRM; Meyer AS; Lange L; Wilkens C
    Enzyme Microb Technol; 2019 Oct; 129():109353. PubMed ID: 31307573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases.
    Pell G; Szabo L; Charnock SJ; Xie H; Gloster TM; Davies GJ; Gilbert HJ
    J Biol Chem; 2004 Mar; 279(12):11777-88. PubMed ID: 14670951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.