These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22728241)

  • 21. Fermentative production of l-galactonate by using recombinant Saccharomyces cerevisiae containing the endogenous galacturonate reductase gene from Cryptococcus diffluens.
    Matsubara T; Hamada S; Wakabayashi A; Kishida M
    J Biosci Bioeng; 2016 Nov; 122(5):639-644. PubMed ID: 27259388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste.
    Protzko RJ; Latimer LN; Martinho Z; de Reus E; Seibert T; Benz JP; Dueber JE
    Nat Commun; 2018 Nov; 9(1):5059. PubMed ID: 30498222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae.
    Auesukaree C; Homma T; Kaneko Y; Harashima S
    Biochem Biophys Res Commun; 2003 Jul; 306(4):843-50. PubMed ID: 12821119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae.
    Stambuk BU; De Araujo PS; Panek AD; Serrano R
    Eur J Biochem; 1996 May; 237(3):876-81. PubMed ID: 8647137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delta-aminolevulinic acid transport in Saccharomyces cerevisiae.
    Bermúdez Moretti M; Correa García S; Stella C; Ramos E; Batlle AM
    Int J Biochem; 1993 Dec; 25(12):1917-24. PubMed ID: 8138030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A label-free real-time method for measuring glucose uptake kinetics in yeast.
    Schmidl S; Iancu CV; Reifenrath M; Choe JY; Oreb M
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33338229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. L-Proline transport in Saccharomyces cerevisiae.
    Horák J; Ríhová L
    Biochim Biophys Acta; 1982 Sep; 691(1):144-50. PubMed ID: 6753931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.
    Wegener S; Bornik MA; Kroh LW
    J Agric Food Chem; 2015 Jul; 63(28):6457-65. PubMed ID: 26111613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Separation of peptide transport and hydrolysis in trimethionine uptake by Saccharomyces cerevisiae.
    Parker DD; Naider F; Becker JM
    J Bacteriol; 1980 Aug; 143(2):1066-9. PubMed ID: 7009548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. L-malic-acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae.
    Salmon JM
    Biochim Biophys Acta; 1987 Jul; 901(1):30-4. PubMed ID: 3297150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of acyclic polyols in Saccharomyces cerevisiae.
    Canh DS; Horák J; Kotyk A; Ríhová L
    Folia Microbiol (Praha); 1975; 20(4):320-5. PubMed ID: 240765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport overshoot during 2-methyl-4-amino-5-hydroxymethylpyrimidine uptake by Saccharomyces cerevisiae.
    Iwashima A; Kimura Y; Kawasaki Y
    Biochim Biophys Acta; 1990 Oct; 1028(2):161-4. PubMed ID: 2223790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of L-tryptophan in Saccharomyces cerevisiae.
    Kotyk A; Dvoráková M
    Folia Microbiol (Praha); 1990; 35(3):209-17. PubMed ID: 2210491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of benzoic acid uptake by Saccharomyces cerevisiae.
    Macris BJ
    Appl Microbiol; 1975 Oct; 30(4):503-6. PubMed ID: 242253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of substrate binding to the purine-transport system of Saccharomyces cerevisiae.
    Forêt M; Schmidt R; Reichert U
    Eur J Biochem; 1978 Jan; 82(1):33-43. PubMed ID: 23293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Peptide transport in yeast: uptake of radioactive trimethionine in Saccharomyces cerevisiae.
    Bekcer JM; Naider F
    Arch Biochem Biophys; 1977 Jan; 178(1):245-55. PubMed ID: 13720
    [No Abstract]   [Full Text] [Related]  

  • 37. Uptake of L-lysine by a double mutant of Saccharomyces cerevisiae.
    García JC; Kotyk A
    Folia Microbiol (Praha); 1988; 33(4):285-91. PubMed ID: 3141253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient.
    Guijarro JM; Lagunas R
    J Bacteriol; 1984 Dec; 160(3):874-8. PubMed ID: 6389514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the medium pH and the cell pH upon the kinetical parameters of phosphate uptake by yeast.
    Borst-Pauwels GW; Peters PH
    Biochim Biophys Acta; 1977 May; 466(3):488-95. PubMed ID: 15598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes.
    Benz JP; Protzko RJ; Andrich JM; Bauer S; Dueber JE; Somerville CR
    Biotechnol Biofuels; 2014 Feb; 7(1):20. PubMed ID: 24502254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.