These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22728341)

  • 1. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2012 Aug; 7(8):509-14. PubMed ID: 22728341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator.
    Srinivasan K; Miao H; Rakher MT; Davanço M; Aksyuk V
    Nano Lett; 2011 Feb; 11(2):791-7. PubMed ID: 21250747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomechanical trampoline resonators.
    Kleckner D; Pepper B; Jeffrey E; Sonin P; Thon SM; Bouwmeester D
    Opt Express; 2011 Sep; 19(20):19708-16. PubMed ID: 21996913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation.
    Bagheri M; Poot M; Li M; Pernice WP; Tang HX
    Nat Nanotechnol; 2011 Oct; 6(11):726-32. PubMed ID: 22020123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative feedback does not improve the optimal resolution of incoherent force detection.
    Vinante A; Bonaldi M; Marin F; Zendri JP
    Nat Nanotechnol; 2013 Jul; 8(7):470. PubMed ID: 23820488
    [No Abstract]   [Full Text] [Related]  

  • 7. Parametric instability of an integrated micromechanical oscillator by means of active optomechanical feedback.
    Roels J; Maes B; Bogaerts W; Baets R; Van Thourhout D
    Opt Express; 2011 Jul; 19(14):13081-8. PubMed ID: 21747460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling.
    Basarir O; Bramhavar S; Ekinci KL
    Nano Lett; 2012 Feb; 12(2):534-9. PubMed ID: 22263699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reply to 'Dissipative feedback does not improve the optimal resolution of incoherent force detection'.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2013 Oct; 8(10):692. PubMed ID: 24091447
    [No Abstract]   [Full Text] [Related]  

  • 10. A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator.
    Tallur S; Sridaran S; Bhave SA
    Opt Express; 2011 Nov; 19(24):24522-9. PubMed ID: 22109479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering.
    Wang M; Zhang R; Ilic R; Aksyuk V; Liu Y
    Nano Lett; 2020 May; 20(5):3050-3057. PubMed ID: 32250636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene mechanical oscillators with tunable frequency.
    Chen C; Lee S; Deshpande VV; Lee GH; Lekas M; Shepard K; Hone J
    Nat Nanotechnol; 2013 Dec; 8(12):923-7. PubMed ID: 24240431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon nanomechanical coupling for nanoscale transduction.
    Thijssen R; Verhagen E; Kippenberg TJ; Polman A
    Nano Lett; 2013 Jul; 13(7):3293-7. PubMed ID: 23746212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chip-scale integrated cavity-electro-optomechanics platform.
    Winger M; Blasius TD; Mayer Alegre TP; Safavi-Naeini AH; Meenehan S; Cohen J; Stobbe S; Painter O
    Opt Express; 2011 Dec; 19(25):24905-21. PubMed ID: 22273884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive detection of force and displacement using trapped ions.
    Biercuk MJ; Uys H; Britton JW; VanDevender AP; Bollinger JJ
    Nat Nanotechnol; 2010 Sep; 5(9):646-50. PubMed ID: 20729835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.
    Tian F; Zhou G; Du Y; Chau FS; Deng J; Tang X; Akkipeddi R
    Opt Express; 2013 Jul; 21(15):18398-407. PubMed ID: 23938711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution.
    Xu X; Zhang Y; Tang J; Chen P; Zeng L; Xia Z; Xing W; Zhou Q; Wang Y; Song H; Guo G; Deng G
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomechanically induced non-reciprocity in microring resonators.
    Hafezi M; Rabl P
    Opt Express; 2012 Mar; 20(7):7672-84. PubMed ID: 22453446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A silicon nitride microdisk resonator with a40-nm-thin horizontal air slot.
    Lee S; Eom SC; Chang JS; Huh C; Sung GY; Shin JH
    Opt Express; 2010 May; 18(11):11209-15. PubMed ID: 20588980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.