These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 22728449)

  • 1. ZnO based thermopower wave sources.
    Walia S; Weber R; Balendhran S; Yao D; Abrahamson JT; Zhuiykov S; Bhaskaran M; Sriram S; Strano MS; Kalantar-zadeh K
    Chem Commun (Camb); 2012 Aug; 48(60):7462-4. PubMed ID: 22728449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.
    Lee KY; Hwang H; Choi W
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15575-82. PubMed ID: 25133980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of chemical fuel composition on energy generation from thermopower waves.
    Yeo T; Hwang H; Jeong DC; Lee KY; Hong J; Song C; Choi W
    Nanotechnology; 2014 Nov; 25(44):445403. PubMed ID: 25319506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavefront velocity oscillations of carbon-nanotube-guided thermopower waves: nanoscale alternating current sources.
    Abrahamson JT; Choi W; Schonenbach NS; Park J; Han JH; Walsh MP; Kalantar-Zadeh K; Strano MS
    ACS Nano; 2011 Jan; 5(1):367-75. PubMed ID: 21182252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excess thermopower and the theory of thermopower waves.
    Abrahamson JT; Sempere B; Walsh MP; Forman JM; Sen F; Sen S; Mahajan SG; Paulus GL; Wang QH; Choi W; Strano MS
    ACS Nano; 2013 Aug; 7(8):6533-44. PubMed ID: 23889080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi
    Singh S; Mun H; Lee S; Kim SW; Baik S
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage amplification of thermopower waves via current crowding at high resistances in self-propagating combustion waves.
    Yeo T; Hwang H; Cho Y; Shin D; Choi W
    Nanotechnology; 2015 Jul; 26(30):305402. PubMed ID: 26159116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase Transformations of Cobalt Oxides in CoxOy-ZnO Multipod Nanostructures via Combustion from Thermopower Waves.
    Lee KY; Hwang H; Choi W
    Small; 2015 Sep; 11(36):4762-73. PubMed ID: 26136292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically driven carbon-nanotube-guided thermopower waves.
    Choi W; Hong S; Abrahamson JT; Han JH; Song C; Nair N; Baik S; Strano MS
    Nat Mater; 2010 May; 9(5):423-9. PubMed ID: 20208525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermopower Wave-Driven Hybrid Supercapacitor Charging System.
    Shin D; Hwang H; Yeo T; Seo B; Choi W
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31042-31050. PubMed ID: 27797172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible ZnO-cellulose nanocomposite for multisource energy conversion.
    Kumar A; Gullapalli H; Balakrishnan K; Botello-Mendez A; Vajtai R; Terrones M; Ajayan PM
    Small; 2011 Aug; 7(15):2173-8. PubMed ID: 21626690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules.
    Tang CF; Kumar SA; Chen SM
    Anal Biochem; 2008 Sep; 380(2):174-83. PubMed ID: 18577367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating electronic transport properties of carbon nanotubes to improve the thermoelectric power factor via nanoparticle decoration.
    Yu C; Ryu Y; Yin L; Yang H
    ACS Nano; 2011 Feb; 5(2):1297-303. PubMed ID: 21222461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments on dye sensitization of zinc oxide.
    Hauffe K; Martinez V; Pusch H; Range J; Schmidt R; Stechemesser R
    Appl Opt; 1969 Jan; 8 Suppl 1():34-41. PubMed ID: 20076095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells.
    He CX; Lei BX; Wang YF; Su CY; Fang YP; Kuang DB
    Chemistry; 2010 Aug; 16(29):8757-61. PubMed ID: 20572173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer.
    Ravirajan P; Peiró AM; Nazeeruddin MK; Graetzel M; Bradley DD; Durrant JR; Nelson J
    J Phys Chem B; 2006 Apr; 110(15):7635-9. PubMed ID: 16610853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N; Kotsis K; Staemmler V
    Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ultraviolet laser from individual ZnO microwire with quadrate cross section.
    Ding M; Zhao D; Yao B; E S; Guo Z; Zhang L; Shen D
    Opt Express; 2012 Jun; 20(13):13657-62. PubMed ID: 22714430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity.
    Lu TC; Lai YY; Lan YP; Huang SW; Chen JR; Wu YC; Hsieh WF; Deng H
    Opt Express; 2012 Feb; 20(5):5530-7. PubMed ID: 22418359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous graphene nanostructures: ZnO nanostructures grown on large-area graphene layers.
    Lin J; Penchev M; Wang G; Paul RK; Zhong J; Jing X; Ozkan M; Ozkan CS
    Small; 2010 Nov; 6(21):2448-52. PubMed ID: 20878792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.