BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1128 related articles for article (PubMed ID: 22728956)

  • 1. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon surface scattering controlled length dependence of thermal conductivity of silicon nanowires.
    Xie G; Guo Y; Li B; Yang L; Zhang K; Tang M; Zhang G
    Phys Chem Chem Phys; 2013 Sep; 15(35):14647-52. PubMed ID: 23884577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
    Jin JS; Lee JS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4094-100. PubMed ID: 18047127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects.
    Bui CT; Xie R; Zheng M; Zhang Q; Sow CH; Li B; Thong JT
    Small; 2012 Mar; 8(5):738-45. PubMed ID: 22162412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonmonotonic Diameter Dependence of Thermal Conductivity of Extremely Thin Si Nanowires: Competition between Hydrodynamic Phonon Flow and Boundary Scattering.
    Zhou Y; Zhang X; Hu M
    Nano Lett; 2017 Feb; 17(2):1269-1276. PubMed ID: 28128960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion.
    Chen TG; Yu P; Chou RH; Pan CL
    Opt Express; 2010 Sep; 18 Suppl 3():A467-76. PubMed ID: 21165077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.
    Lee J; Lee W; Lim J; Yu Y; Kong Q; Urban JJ; Yang P
    Nano Lett; 2016 Jul; 16(7):4133-40. PubMed ID: 27243378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires.
    Chen J; Zhang G; Li B
    J Chem Phys; 2011 Sep; 135(10):104508. PubMed ID: 21932911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of ionized impurity scattering on the thermopower of Si nanowires.
    Oh JH; Jang MG; Shin M
    J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires.
    Qu X; Gu J
    RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Chemical Tuning of Phonon and Electron Transport in Free-Standing Silicon Nanowire Arrays.
    Pan Y; Tao Y; Qin G; Fedoryshyn Y; Raja SN; Hu M; Degen CL; Poulikakos D
    Nano Lett; 2016 Oct; 16(10):6364-6370. PubMed ID: 27580070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
    Malhotra A; Maldovan M
    Sci Rep; 2016 May; 6():25818. PubMed ID: 27174699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous heat conduction behavior in thin finite-size silicon nanowires.
    Yang X; To AC; Tian R
    Nanotechnology; 2010 Apr; 21(15):155704. PubMed ID: 20332560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity in porous silicon nanowire arrays.
    Weisse JM; Marconnet AM; Kim DR; Rao PM; Panzer MA; Goodson KE; Zheng X
    Nanoscale Res Lett; 2012 Oct; 7(1):554. PubMed ID: 23039084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.