These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 22728982)
1. Sustainable remediation--the application of bioremediated soil for use in the degradation of TNT chips. Erkelens M; Adetutu EM; Taha M; Tudararo-Aherobo L; Antiabong J; Provatas A; Ball AS J Environ Manage; 2012 Nov; 110():69-76. PubMed ID: 22728982 [TBL] [Abstract][Full Text] [Related]
2. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Chi XQ; Zhang JJ; Zhao S; Zhou NY Environ Pollut; 2013 Jan; 172():33-41. PubMed ID: 22982551 [TBL] [Abstract][Full Text] [Related]
3. Re-use of remediated soils for the bioremediation of waste oil sludge. Makadia TH; Adetutu EM; Simons KL; Jardine D; Sheppard PJ; Ball AS J Environ Manage; 2011 Mar; 92(3):866-71. PubMed ID: 21115217 [TBL] [Abstract][Full Text] [Related]
4. Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Travis ER; Bruce NC; Rosser SJ Environ Pollut; 2008 May; 153(2):432-9. PubMed ID: 17935846 [TBL] [Abstract][Full Text] [Related]
5. Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Fahrenfeld N; Zoeckler J; Widdowson MA; Pruden A Biodegradation; 2013 Apr; 24(2):179-90. PubMed ID: 22791276 [TBL] [Abstract][Full Text] [Related]
6. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Robertson BK; Jjemba PK Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929 [TBL] [Abstract][Full Text] [Related]
7. An in situ respirometric technique to measure pollution-induced microbial community tolerance in soils contaminated with 2,4, 6-trinitrotoluene. Gong P; Gasparrini P; Rho D; Hawari J; Thiboutot S; Ampleman G; Sunahara GI Ecotoxicol Environ Saf; 2000 Sep; 47(1):96-103. PubMed ID: 10993709 [TBL] [Abstract][Full Text] [Related]
8. Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene contamination. George IF; Liles MR; Hartmann M; Ludwig W; Goodman RM; Agathos SN FEMS Microbiol Lett; 2009 Jun; 296(2):159-66. PubMed ID: 19459956 [TBL] [Abstract][Full Text] [Related]
9. Sequential biodegradation of TNT, RDX and HMX in a mixture. Sagi-Ben Moshe S; Ronen Z; Dahan O; Weisbrod N; Groisman L; Adar E; Nativ R Environ Pollut; 2009; 157(8-9):2231-8. PubMed ID: 19428165 [TBL] [Abstract][Full Text] [Related]
10. Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Claus H; Bausinger T; Lehmler I; Perret N; Fels G; Dehner U; Preuss J; König H Biodegradation; 2007 Feb; 18(1):27-35. PubMed ID: 16758276 [TBL] [Abstract][Full Text] [Related]
11. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. Muter O; Potapova K; Limane B; Sproge K; Jakobsone I; Cepurnieks G; Bartkevics V J Environ Manage; 2012 May; 98():51-5. PubMed ID: 22245864 [TBL] [Abstract][Full Text] [Related]
12. Radiation-induced impacts on the degradation of 2,4-D and the microbial population in soil microcosms. Niedrée B; Vereecken H; Burauel P J Environ Radioact; 2013 Jan; 115():168-74. PubMed ID: 22975652 [TBL] [Abstract][Full Text] [Related]
13. Effect of 2,4,6-trinitrotoluene on soil bacterial communities. George I; Eyers L; Stenuit B; Agathos SN J Ind Microbiol Biotechnol; 2008 Apr; 35(4):225-36. PubMed ID: 18228070 [TBL] [Abstract][Full Text] [Related]
14. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. Newcombe DA; Crawford RL Biodegradation; 2007 Dec; 18(6):741-54. PubMed ID: 17273913 [TBL] [Abstract][Full Text] [Related]
15. Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms. Shen CF; Hawari JA; Paquet L; Ampleman G; Thiboutot S; Guiot SR Water Sci Technol; 2001; 43(3):291-8. PubMed ID: 11381919 [TBL] [Abstract][Full Text] [Related]
16. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. Liang Y; Li G; Van Nostrand JD; He Z; Wu L; Deng Y; Zhang X; Zhou J FEMS Microbiol Ecol; 2009 Nov; 70(2):324-33. PubMed ID: 19780823 [TBL] [Abstract][Full Text] [Related]
17. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Frische T; Höper H Chemosphere; 2003 Jan; 50(3):415-27. PubMed ID: 12656263 [TBL] [Abstract][Full Text] [Related]
18. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils. Epelde L; Martín-Sánchez I; González-Oreja JA; Anza M; Gómez-Sagasti MT; Garbisu C Sci Total Environ; 2012 Sep; 433():264-72. PubMed ID: 22796724 [TBL] [Abstract][Full Text] [Related]
19. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Drzyzga O; Bruns-Nagel D; Gorontzy T; Blotevogel KH; von Löw E Chemosphere; 1999 Apr; 38(9):2081-95. PubMed ID: 10101860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]