These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2272937)

  • 1. Hypersensitivity of hydropic ears, at frequencies with normal thresholds, to temporary threshold shifts.
    Horner KC
    Hear Res; 1990 Oct; 48(3):281-6. PubMed ID: 2272937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acoustic overstimulation on the hydropic ear.
    Nishikawa N; Kusakari J; Wada T; Ito Z; Ase Y; Hara A; Nakata H
    Acta Otolaryngol Suppl; 1995; 519():102-6. PubMed ID: 7610841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion products in early stage experimental hydrops in the guinea pig.
    Horner K; Cazals Y
    Hear Res; 1989 Dec; 43(1):71-9. PubMed ID: 2613568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations of auditory nerve responses by hypoxia in normal and hydropic ears of awake guinea pigs.
    Cazals Y; Wu ZY; Horner K
    Hear Res; 1994 Jun; 77(1-2):177-82. PubMed ID: 7928729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans.
    Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N
    Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of compound action potential audiograms with distortion product otoacoustic emissions in experimentally induced hydrops.
    Horner KC
    Eur Arch Otorhinolaryngol; 1991; 248(5):302-7. PubMed ID: 1888509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops.
    Fetterman BL
    Laryngoscope; 2001 Jun; 111(6):946-54. PubMed ID: 11404602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous otoacoustic emissions in humans with endolymphatic hydrops.
    Haginomori SI; Makimoto K; Tanaka H; Araki M; Takenaka H
    Laryngoscope; 2001 Jan; 111(1):96-101. PubMed ID: 11192908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocochleographic study of experimentally induced endolymphatic hydrops.
    van Deelen GW; Ruding PR; Veldman JE; Huizing EH; Smoorenburg GF
    Arch Otorhinolaryngol; 1987; 244(3):167-73. PubMed ID: 3675299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapidly fluctuating thresholds at the onset of experimentally-induced hydrops in the guinea pig.
    Horner KC; Cazals Y
    Hear Res; 1987; 26(3):319-25. PubMed ID: 3583932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig.
    Avan P; Bonfils P; Loth D; Elbez M; Erminy M
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3012-20. PubMed ID: 7759641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones.
    Salt AN
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):203-14. PubMed ID: 15357421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporary threshold shifts at 1500 and 2000 Hz induced by loud voice signals communicated through earphones in the pinball industry.
    Idota N; Horie S; Tsutsui T; Inoue J
    Ann Occup Hyg; 2010 Oct; 54(7):842-9. PubMed ID: 20584863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual effects in monaural temporary threshold shifts to pure tones.
    Rajan R; Johnstone BM
    Hear Res; 1983 Nov; 12(2):185-97. PubMed ID: 6643290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of increased endolymphatic pressure to hearing loss in experimental hydrops.
    Horner KC; Cazals Y
    Ann Otol Rhinol Laryngol; 1991 Jun; 100(6):496-502. PubMed ID: 2058991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA; Reed CM; Robinson SR; Perez ZD
    Ear Hear; 2018; 39(5):946-957. PubMed ID: 29470259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts.
    Rajan R
    J Neurophysiol; 1988 Aug; 60(2):569-79. PubMed ID: 3171642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporary change of compound action potential amplitude after intense sound exposure.
    Homma T; Hasegawa M; Okamoto A; Yokoyama K; Tamura T
    ORL J Otorhinolaryngol Relat Spec; 1994; 56(1):19-23. PubMed ID: 8121679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product emissions in humans. I. Basic properties in normally hearing subjects.
    Lonsbury-Martin BL; Harris FP; Stagner BB; Hawkins MD; Martin GK
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():3-14. PubMed ID: 2110797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.