BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22729463)

  • 1. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations.
    Chatterjee R; Ramos E; Hoffman M; VanWinkle J; Martin DR; Davis TK; Hoshi M; Hmiel SP; Beck A; Hruska K; Coplen D; Liapis H; Mitra R; Druley T; Austin P; Jain S
    Hum Genet; 2012 Nov; 131(11):1725-38. PubMed ID: 22729463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hirschsprung disease and congenital anomalies of the kidney and urinary tract (CAKUT): a novel syndromic association.
    Prato AP; Musso M; Ceccherini I; Mattioli G; Giunta C; Ghiggeri GM; Jasonni V
    Medicine (Baltimore); 2009 Mar; 88(2):83-90. PubMed ID: 19282698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling.
    Sawai H; Okada Y; Kazanjian K; Kim J; Hasan S; Hines OJ; Reber HA; Hoon DS; Eibl G
    Cancer Res; 2005 Dec; 65(24):11536-44. PubMed ID: 16357163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To bud or not to bud: the RET perspective in CAKUT.
    Davis TK; Hoshi M; Jain S
    Pediatr Nephrol; 2014 Apr; 29(4):597-608. PubMed ID: 24022366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-exome sequencing identifies mutations of TBC1D1 encoding a Rab-GTPase-activating protein in patients with congenital anomalies of the kidneys and urinary tract (CAKUT).
    Kosfeld A; Kreuzer M; Daniel C; Brand F; Schäfer AK; Chadt A; Weiss AC; Riehmer V; Jeanpierre C; Klintschar M; Bräsen JH; Amann K; Pape L; Kispert A; Al-Hasani H; Haffner D; Weber RG
    Hum Genet; 2016 Jan; 135(1):69-87. PubMed ID: 26572137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract.
    van der Ven AT; Connaughton DM; Ityel H; Mann N; Nakayama M; Chen J; Vivante A; Hwang DY; Schulz J; Braun DA; Schmidt JM; Schapiro D; Schneider R; Warejko JK; Daga A; Majmundar AJ; Tan W; Jobst-Schwan T; Hermle T; Widmeier E; Ashraf S; Amar A; Hoogstraaten CA; Hugo H; Kitzler TM; Kause F; Kolvenbach CM; Dai R; Spaneas L; Amann K; Stein DR; Baum MA; Somers MJG; Rodig NM; Ferguson MA; Traum AZ; Daouk GH; Bogdanović R; Stajić N; Soliman NA; Kari JA; El Desoky S; Fathy HM; Milosevic D; Al-Saffar M; Awad HS; Eid LA; Selvin A; Senguttuvan P; Sanna-Cherchi S; Rehm HL; MacArthur DG; Lek M; Laricchia KM; Wilson MW; Mane SM; Lifton RP; Lee RS; Bauer SB; Lu W; Reutter HM; Tasic V; Shril S; Hildebrandt F
    J Am Soc Nephrol; 2018 Sep; 29(9):2348-2361. PubMed ID: 30143558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract.
    Kohl S; Hwang DY; Dworschak GC; Hilger AC; Saisawat P; Vivante A; Stajic N; Bogdanovic R; Reutter HM; Kehinde EO; Tasic V; Hildebrandt F
    J Am Soc Nephrol; 2014 Sep; 25(9):1917-22. PubMed ID: 24700879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the GDNF/RET-GDNFR alpha signaling complex in a kindred with vesicoureteral reflux.
    Shefelbine SE; Khorana S; Schultz PN; Huang E; Thobe N; Hu ZJ; Fox GM; Jing S; Cote GJ; Gagel RF
    Hum Genet; 1998 Apr; 102(4):474-8. PubMed ID: 9600247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kidney development in the absence of Gdnf and Spry1 requires Fgf10.
    Michos O; Cebrian C; Hyink D; Grieshammer U; Williams L; D'Agati V; Licht JD; Martin GR; Costantini F
    PLoS Genet; 2010 Jan; 6(1):e1000809. PubMed ID: 20084103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sprouty1 Controls Genitourinary Development via its N-Terminal Tyrosine.
    Vaquero M; Cuesta S; Anerillas C; Altés G; Ribera J; Basson MA; Licht JD; Egea J; Encinas M
    J Am Soc Nephrol; 2019 Aug; 30(8):1398-1411. PubMed ID: 31300484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient.
    Angrist M; Bolk S; Halushka M; Lapchak PA; Chakravarti A
    Nat Genet; 1996 Nov; 14(3):341-4. PubMed ID: 8896568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice.
    Hoshi M; Batourina E; Mendelsohn C; Jain S
    Development; 2012 Jul; 139(13):2405-15. PubMed ID: 22627285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects.
    Jeanpierre C; Macé G; Parisot M; Morinière V; Pawtowsky A; Benabou M; Martinovic J; Amiel J; Attié-Bitach T; Delezoide AL; Loget P; Blanchet P; Gaillard D; Gonzales M; Carpentier W; Nitschke P; Tores F; Heidet L; Antignac C; Salomon R;
    J Med Genet; 2011 Jul; 48(7):497-504. PubMed ID: 21490379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A homozygous truncating ETV4 variant in a Nigerian family with congenital anomalies of the kidney and urinary tract.
    Kolvenbach CM; Zheng B; Merz LM; Mertens ND; Mansour B; Wang C; Seltzsam S; Schneider S; Schierbaum L; Pantel D; Chen J; van der Ven AT; Bello JO; Shril S; Hildebrandt F
    Am J Med Genet A; 2023 May; 191(5):1355-1359. PubMed ID: 36694287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene.
    Bekheirnia MR; Bekheirnia N; Bainbridge MN; Gu S; Coban Akdemir ZH; Gambin T; Janzen NK; Jhangiani SN; Muzny DM; Michael M; Brewer ED; Elenberg E; Kale AS; Riley AA; Swartz SJ; Scott DA; Yang Y; Srivaths PR; Wenderfer SE; Bodurtha J; Applegate CD; Velinov M; Myers A; Borovik L; Craigen WJ; Hanchard NA; Rosenfeld JA; Lewis RA; Gonzales ET; Gibbs RA; Belmont JW; Roth DR; Eng C; Braun MC; Lupski JR; Lamb DJ
    Genet Med; 2017 Apr; 19(4):412-420. PubMed ID: 27657687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mapping of receptor specificity domains of glial cell line-derived neurotrophic factor (GDNF) family ligands and production of GFRalpha1 RET-specific agonists.
    Baloh RH; Tansey MG; Johnson EM; Milbrandt J
    J Biol Chem; 2000 Feb; 275(5):3412-20. PubMed ID: 10652334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the bone morphogenic protein/SMAD signaling pathway in the etiology of congenital anomalies of the kidney and urinary tract accompanied by cryptorchidism.
    Mizuno K; Nakane A; Nishio H; Moritoki Y; Kamisawa H; Kurokawa S; Kato T; Ando R; Maruyama T; Yasui T; Hayashi Y
    BMC Urol; 2017 Dec; 17(1):112. PubMed ID: 29197384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RET-mediated glial cell line-derived neurotrophic factor signaling inhibits mouse prostate development.
    Park HJ; Bolton EC
    Development; 2017 Jun; 144(12):2282-2293. PubMed ID: 28506996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.
    Tsui CC; Gabreski NA; Hein SJ; Pierchala BA
    J Neurosci; 2015 Sep; 35(38):13233-43. PubMed ID: 26400951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and VHL.
    Woodward ER; Eng C; McMahon R; Voutilainen R; Affara NA; Ponder BA; Maher ER
    Hum Mol Genet; 1997 Jul; 6(7):1051-6. PubMed ID: 9215674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.