These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 22729487)

  • 1. Proteases, cystic fibrosis and the epithelial sodium channel (ENaC).
    Thibodeau PH; Butterworth MB
    Cell Tissue Res; 2013 Feb; 351(2):309-23. PubMed ID: 22729487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa.
    Butterworth MB; Zhang L; Heidrich EM; Myerburg MM; Thibodeau PH
    J Biol Chem; 2012 Sep; 287(39):32556-65. PubMed ID: 22859302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute regulation of the epithelial sodium channel in airway epithelia by proteases and trafficking.
    Myerburg MM; Harvey PR; Heidrich EM; Pilewski JM; Butterworth MB
    Am J Respir Cell Mol Biol; 2010 Dec; 43(6):712-9. PubMed ID: 20097829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells.
    Mroz MS; Harvey BJ
    Steroids; 2019 Nov; 151():108461. PubMed ID: 31344409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of bacterial proteases in the pathogenesis of cystic fibrosis.
    Suter S
    Am J Respir Crit Care Med; 1994 Dec; 150(6 Pt 2):S118-22. PubMed ID: 7952646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance: a mechanism for sodium hyperabsorption in cystic fibrosis.
    Myerburg MM; Butterworth MB; McKenna EE; Peters KW; Frizzell RA; Kleyman TR; Pilewski JM
    J Biol Chem; 2006 Sep; 281(38):27942-9. PubMed ID: 16873367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteases, ENaCs and cystic fibrosis.
    Kleyman TR; Myerburg MM
    J Physiol; 2014 Dec; 592(23):5145. PubMed ID: 25448184
    [No Abstract]   [Full Text] [Related]  

  • 8. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease.
    Moore PJ; Tarran R
    Expert Opin Ther Targets; 2018 Aug; 22(8):687-701. PubMed ID: 30028216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of neutrophil elastase and its inhibitor EPI-hNE4 on transepithelial sodium transport across normal and cystic fibrosis human nasal epithelial cells.
    Prulière-Escabasse V; Clerici C; Vuagniaux G; Coste A; Escudier E; Planès C
    Respir Res; 2010 Oct; 11(1):141. PubMed ID: 20932306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENaC inhibitors and airway re-hydration in cystic fibrosis: state of the art.
    Althaus M
    Curr Mol Pharmacol; 2013 Mar; 6(1):3-12. PubMed ID: 23547930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteases and cystic fibrosis.
    Voynow JA; Fischer BM; Zheng S
    Int J Biochem Cell Biol; 2008; 40(6-7):1238-45. PubMed ID: 18395488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPLUNC1 regulates airway surface liquid volume by protecting ENaC from proteolytic cleavage.
    Garcia-Caballero A; Rasmussen JE; Gaillard E; Watson MJ; Olsen JC; Donaldson SH; Stutts MJ; Tarran R
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11412-7. PubMed ID: 19541605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Protease-Epithelial Sodium Channel Signaling Improves Mucociliary Function in Cystic Fibrosis Airways.
    Reihill JA; Walker B; Hamilton RA; Ferguson TE; Elborn JS; Stutts MJ; Harvey BJ; Saint-Criq V; Hendrick SM; Martin SL
    Am J Respir Crit Care Med; 2016 Sep; 194(6):701-10. PubMed ID: 27014936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S.
    Haerteis S; Krappitz M; Bertog M; Krappitz A; Baraznenok V; Henderson I; Lindström E; Murphy JE; Bunnett NW; Korbmacher C
    Pflugers Arch; 2012 Oct; 464(4):353-65. PubMed ID: 22864553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid movement across the surface epithelium of large airways.
    Chambers LA; Rollins BM; Tarran R
    Respir Physiol Neurobiol; 2007 Dec; 159(3):256-70. PubMed ID: 17692578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Amiloride sensitive sodium channels (ENaC) and their regulation by proteases].
    Galizia L; Ojea A; Kotsias BA
    Medicina (B Aires); 2011; 71(2):179-82. PubMed ID: 21550939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC.
    Anand P; Puranik A; Aravamudan M; Venkatakrishnan AJ; Soundararajan V
    Elife; 2020 May; 9():. PubMed ID: 32452762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of SPLUNC1's ENaC-inhibitory domain yields novel strategies to treat sodium hyperabsorption in cystic fibrosis airways.
    Hobbs CA; Blanchard MG; Kellenberger S; Bencharit S; Cao R; Kesimer M; Walton WG; Redinbo MR; Stutts MJ; Tarran R
    FASEB J; 2012 Oct; 26(10):4348-59. PubMed ID: 22798424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low temperature and chemical rescue affect molecular proximity of DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC).
    Qadri YJ; Cormet-Boyaka E; Rooj AK; Lee W; Parpura V; Fuller CM; Berdiev BK
    J Biol Chem; 2012 May; 287(20):16781-90. PubMed ID: 22442149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ENaC at the cutting edge: regulation of epithelial sodium channels by proteases.
    Kleyman TR; Carattino MD; Hughey RP
    J Biol Chem; 2009 Jul; 284(31):20447-51. PubMed ID: 19401469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.