These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22729541)

  • 1. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration.
    Koseki S; Nonaka J
    Appl Environ Microbiol; 2012 Sep; 78(17):6103-12. PubMed ID: 22729541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of environmental parameters on growth kinetics of Bacillus cereus (ATCC 7004) after mild heat treatment.
    Martínez S; Borrajo R; Franco I; Carballo J
    Int J Food Microbiol; 2007 Jun; 117(2):223-7. PubMed ID: 16978725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the growth kinetics of Bacillus cereus as a function of temperature, pH, sodium lactate and sodium chloride concentrations.
    Olmez HK; Aran N
    Int J Food Microbiol; 2005 Feb; 98(2):135-43. PubMed ID: 15681041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling Bacillus cereus growth.
    Chorin E; Thuault D; Cléret JJ; Bourgeois CM
    Int J Food Microbiol; 1997 Sep; 38(2-3):229-34. PubMed ID: 9506288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and validation of a growth model for Bacillus cereus: the effects of temperature, pH, sodium chloride and carbon dioxide.
    Sutherland JP; Aherne A; Beaumont AL
    Int J Food Microbiol; 1996 Jul; 30(3):359-72. PubMed ID: 8854187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting germination and growth of Bacillus cereus spores in milk.
    Helmy ZA; Abd-El-Bakey A; Mohamed EI
    Zentralbl Mikrobiol; 1984; 139(2):135-41. PubMed ID: 6428077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of salt concentration on bacterial growth on plates with gradients of pH and temperature.
    Peters AC; Thomas L; Wimpenny JW
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):309-14. PubMed ID: 1903754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a time-to-detect growth model for heat-treated Bacillus cereus spores.
    Daelman J; Sharma A; Vermeulen A; Uyttendaele M; Devlieghere F; Membré JM
    Int J Food Microbiol; 2013 Aug; 165(3):231-40. PubMed ID: 23796655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature shifts on survival, growth, and toxin production by psychrotrophic and mesophilic strains of Bacillus cereus in potatoes and chicken gravy.
    Mahakarnchanakul W; Beuchat LR
    Int J Food Microbiol; 1999 Mar; 47(3):179-87. PubMed ID: 10359488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH and sodium chloride on growth of Bacillus cereus in laboratory media and certain foods.
    Raevuori M; Genigeorgis C
    Appl Microbiol; 1975 Jan; 29(1):68-73. PubMed ID: 234158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth/no growth models for heat-treated psychrotrophic Bacillus cereus spores under cold storage.
    Daelman J; Vermeulen A; Willemyns T; Ongenaert R; Jacxsens L; Uyttendaele M; Devlieghere F
    Int J Food Microbiol; 2013 Jan; 161(1):7-15. PubMed ID: 23246607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus.
    Periago PM; Moezelaar R
    Int J Food Microbiol; 2001 Aug; 68(1-2):141-8. PubMed ID: 11545214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacillus cereus
    Français M; Carlin F; Broussolle V; Nguyen-Thé C
    Appl Environ Microbiol; 2019 Jul; 85(14):. PubMed ID: 31076436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus.
    Ultee A; Gorris LG; Smid EJ
    J Appl Microbiol; 1998 Aug; 85(2):211-8. PubMed ID: 9750293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation of cardinal growth parameters and growth limits according to phylogenetic affiliation in the Bacillus cereus Group. Consequences for risk assessment.
    Carlin F; Albagnac C; Rida A; Guinebretière MH; Couvert O; Nguyen-The C
    Food Microbiol; 2013 Feb; 33(1):69-76. PubMed ID: 23122503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of three preservatives on the growth of Bacillus cereus, Vero cytotoxigenic Escherichia coli and Staphylococcus aureus, on plates with gradients of pH and sodium chloride concentration.
    Thomas LV; Wimpenny JW; Davis JG
    Int J Food Microbiol; 1993 Feb; 17(4):289-301. PubMed ID: 8466802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of anaerobiosis, low pH and cold temperatures on the growth capacities of psychrotrophic Bacillus cereus.
    Guérin A; Dargaignaratz C; Broussolle V; Clavel T; Nguyen-The C
    Food Microbiol; 2016 Oct; 59():119-23. PubMed ID: 27375252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a 'sous-vide' beef goulash under temperature abuse.
    Aran N
    Int J Food Microbiol; 2001 Jan; 63(1-2):117-23. PubMed ID: 11205943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation kinetics of slightly acidic electrolyzed water combined with benzalkonium chloride and mild heat treatment on vegetative cells, spores, and biofilms of Bacillus cereus.
    Hussain MS; Tango CN; Oh DH
    Food Res Int; 2019 Feb; 116():157-167. PubMed ID: 30716932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing nonsynergy gamma models and interaction models to predict growth of emetic Bacillus cereus for combinations of pH and water activity values.
    Biesta-Peters EG; Reij MW; Zwietering MH; Gorris LG
    Appl Environ Microbiol; 2011 Aug; 77(16):5707-15. PubMed ID: 21705525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.