These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22729564)
1. Personal air sampling and risks of inhalation exposure during atrazine application in Honduras. Lozier MJ; Montoya JF; Del Rosario A; Martínez EP; Fuortes L; Cook TM; Sanderson WT Int Arch Occup Environ Health; 2013 May; 86(4):479-88. PubMed ID: 22729564 [TBL] [Abstract][Full Text] [Related]
2. Particle Size Characterization of Agricultural Sprays Collected on Personal Air Monitoring Samplers. Flack SL; Ledson TM; Ramanarayanan TS J Agric Saf Health; 2019 Apr; 25(2):91-103. PubMed ID: 32429610 [TBL] [Abstract][Full Text] [Related]
3. Mixed-effect models for evaluating multiple measures of atrazine exposure among custom applicators. Hines CJ; Deddens JA; Lu C; Fenske R; Striley CA J Occup Environ Hyg; 2006 May; 3(5):274-83. PubMed ID: 16595379 [TBL] [Abstract][Full Text] [Related]
4. Determinants of atrazine contamination in the homes of commercial pesticide applicators across time. Lozier MJ; Curwin B; Nishioka MG; Sanderson W J Occup Environ Hyg; 2012; 9(5):289-97. PubMed ID: 22506545 [TBL] [Abstract][Full Text] [Related]
5. Saliva biomonitoring of atrazine exposure among herbicide applicators. Denovan LA; Lu C; Hines CJ; Fenske RA Int Arch Occup Environ Health; 2000 Sep; 73(7):457-62. PubMed ID: 11057414 [TBL] [Abstract][Full Text] [Related]
6. Potential dermal exposure to operators applying pesticide on greenhouse crops using low-cost equipment. Rincón VJ; Páez FC; Sánchez-Hermosilla J Sci Total Environ; 2018 Jul; 630():1181-1187. PubMed ID: 29554739 [TBL] [Abstract][Full Text] [Related]
7. Comparative studies of knapsack, boom, and drone sprayers for weed management in soybean (Glycine max L.). Hiremath C; Khatri N; Jagtap MP Environ Res; 2024 Jan; 240(Pt 1):117480. PubMed ID: 37890833 [TBL] [Abstract][Full Text] [Related]
8. Paraquat exposure of backpack sprayers in agricultural area in Thailand. Konthonbut P; Kongtip P; Nankongnab N; Tipayamongkholgul M; Yoosook W; Woskie S Hum Ecol Risk Assess; 2020; 26(10):2798-2811. PubMed ID: 34539171 [TBL] [Abstract][Full Text] [Related]
9. Pesticide residues on the external surfaces of field-crop sprayers: environmental impact. Ramwell CT; Johnson PD; Boxall A; Rimmer DA Pest Manag Sci; 2004 Aug; 60(8):795-802. PubMed ID: 15307671 [TBL] [Abstract][Full Text] [Related]
10. COMPARATIVE HYGIENIC ASSESSMENT OF WORKING CONDITIONS AND OCCUPATIONAL RISK IN THE APPLICATION OF PESTICIDES (ON THE EXAMPLE OF FUNGICIDE AMISTAR EXTRA 280, SC) USING DIFFERENT TYPES OF SPRAYERS. Borysenko АА; Antonenko АМ; Omelchuk SТ; Bardov VG; Vavrinevych OP Wiad Lek; 2021; 74(3 cz 2):726-730. PubMed ID: 33843643 [TBL] [Abstract][Full Text] [Related]
11. Biomarker correlations of urinary 2,4-D levels in foresters: genomic instability and endocrine disruption. Garry VF; Tarone RE; Kirsch IR; Abdallah JM; Lombardi DP; Long LK; Burroughs BL; Barr DB; Kesner JS Environ Health Perspect; 2001 May; 109(5):495-500. PubMed ID: 11401761 [TBL] [Abstract][Full Text] [Related]
12. High pesticide inhalation exposure from multiple spraying sources amongst applicators in Eswatini, Southern Africa. Msibi SS; Chen CY; Chang CP; Chen CJ; Chiang SY; Wu KY Pest Manag Sci; 2021 Oct; 77(10):4303-4312. PubMed ID: 33942970 [TBL] [Abstract][Full Text] [Related]
13. Worker exposure to a herbicide applied with ground sprayers in the United Kingdom. Abbott IM; Bonsall JL; Chester G; Hart TB; Turnbull GJ Am Ind Hyg Assoc J; 1987 Feb; 48(2):167-75. PubMed ID: 3565271 [TBL] [Abstract][Full Text] [Related]
14. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
15. Air, Dermal, and Urinary Metabolite Levels of Backpack and Tractor Sprayers Using the Herbicide Acetochlor in Thailand. Kallayanatham N; Pengpumkiat S; Kongtip P; Pundee R; Nankongnab N; Kongtawelert A; Woskie SR Toxics; 2023 Jul; 11(7):. PubMed ID: 37505587 [TBL] [Abstract][Full Text] [Related]
16. Pesticide contamination of workers in vineyards in France. Baldi I; Lebailly P; Jean S; Rougetet L; Dulaurent S; Marquet P J Expo Sci Environ Epidemiol; 2006 Mar; 16(2):115-24. PubMed ID: 16175199 [TBL] [Abstract][Full Text] [Related]
17. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
18. Would banning atrazine benefit farmers? Ackerman F; Whited M; Knight P Int J Occup Environ Health; 2014; 20(1):61-70. PubMed ID: 24804340 [TBL] [Abstract][Full Text] [Related]
19. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine. Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591 [TBL] [Abstract][Full Text] [Related]
20. Field experiments for the evaluation of pesticide spray-drift on arable crops. Ravier I; Haouisee E; Clément M; Seux R; Briand O Pest Manag Sci; 2005 Aug; 61(8):728-36. PubMed ID: 15822072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]