BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22729839)

  • 21. Structure of the hemoglobin-IsdH complex reveals the molecular basis of iron capture by Staphylococcus aureus.
    Dickson CF; Kumar KK; Jacques DA; Malmirchegini GR; Spirig T; Mackay JP; Clubb RT; Guss JM; Gell DA
    J Biol Chem; 2014 Mar; 289(10):6728-6738. PubMed ID: 24425866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains.
    Bowden CF; Verstraete MM; Eltis LD; Murphy ME
    Biochemistry; 2014 Apr; 53(14):2286-94. PubMed ID: 24645787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron-regulated surface determinant (Isd) proteins of Staphylococcus lugdunensis.
    Zapotoczna M; Heilbronner S; Speziale P; Foster TJ
    J Bacteriol; 2012 Dec; 194(23):6453-67. PubMed ID: 23002220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The iron-regulated surface proteins IsdA, IsdB, and IsdH are not required for heme iron utilization in Staphylococcus aureus.
    Hurd AF; Garcia-Lara J; Rauter Y; Cartron M; Mohamed R; Foster SJ
    FEMS Microbiol Lett; 2012 Apr; 329(1):93-100. PubMed ID: 22268825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme.
    Villareal VA; Pilpa RM; Robson SA; Fadeev EA; Clubb RT
    J Biol Chem; 2008 Nov; 283(46):31591-600. PubMed ID: 18715872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and role of the linker domain of the iron surface-determinant protein IsdH in heme transportation in Staphylococcus aureus.
    Valenciano-Bellido S; Caaveiro JMM; Morante K; Sushko T; Nakakido M; Nagatoishi S; Tsumoto K
    J Biol Chem; 2022 Jun; 298(6):101995. PubMed ID: 35500652
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure and molecular determinants of hemoglobin binding of the first NEAT domain of IsdB in Staphylococcus aureus.
    Fonner BA; Tripet BP; Eilers BJ; Stanisich J; Sullivan-Springhetti RK; Moore R; Liu M; Lei B; Copié V
    Biochemistry; 2014 Jun; 53(24):3922-33. PubMed ID: 24871270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen.
    Sæderup KL; Stødkilde K; Graversen JH; Dickson CF; Etzerodt A; Hansen SW; Fago A; Gell D; Andersen CB; Moestrup SK
    J Biol Chem; 2016 Nov; 291(46):23989-23998. PubMed ID: 27681593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Staphylococcus aureus IsdH Receptor Forms a Dynamic Complex with Human Hemoglobin that Triggers Heme Release via Two Distinct Hot Spots.
    Ellis-Guardiola K; Clayton J; Pham C; Mahoney BJ; Wereszczynski J; Clubb RT
    J Mol Biol; 2020 Feb; 432(4):1064-1082. PubMed ID: 31881209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization.
    Torres VJ; Pishchany G; Humayun M; Schneewind O; Skaar EP
    J Bacteriol; 2006 Dec; 188(24):8421-9. PubMed ID: 17041042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of Staphylococcus aureus.
    Moriwaki Y; Caaveiro JM; Tanaka Y; Tsutsumi H; Hamachi I; Tsumoto K
    Biochemistry; 2011 Aug; 50(34):7311-20. PubMed ID: 21797259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular localization of the Staphylococcus aureus heme iron transport components IsdA and IsdB.
    Pishchany G; Dickey SE; Skaar EP
    Infect Immun; 2009 Jul; 77(7):2624-34. PubMed ID: 19398548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by
    Mikkelsen JH; Runager K; Andersen CBF
    J Biol Chem; 2020 Feb; 295(7):1781-1791. PubMed ID: 31819010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human mAbs to Staphylococcus aureus IsdA Provide Protection Through Both Heme-Blocking and Fc-Mediated Mechanisms.
    Bennett MR; Bombardi RG; Kose N; Parrish EH; Nagel MB; Petit RA; Read TD; Schey KL; Thomsen IP; Skaar EP; Crowe JE
    J Infect Dis; 2019 Apr; 219(8):1264-1273. PubMed ID: 30496483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus.
    Abi-Khalil E; Segond D; Terpstra T; André-Leroux G; Kallassy M; Lereclus D; Bou-Abdallah F; Nielsen-Leroux C
    Biochim Biophys Acta; 2015 Sep; 1850(9):1930-41. PubMed ID: 26093289
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function analyses reveal key features in
    Bowden CFM; Chan ACK; Li EJW; Arrieta AL; Eltis LD; Murphy MEP
    J Biol Chem; 2018 Jan; 293(1):177-190. PubMed ID: 29109153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ¹H, ¹³C, ¹⁵N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus.
    Fonner BA; Tripet BP; Lui M; Zhu H; Lei B; Copié V
    Biomol NMR Assign; 2014 Apr; 8(1):201-5. PubMed ID: 23686822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Heme Transfer Reactions between NEAr Transporter Domains of Staphylococcus aureus: A Theoretical Study Using QM/MM and MD Simulations.
    Moriwaki Y; Terada T; Tsumoto K; Shimizu K
    PLoS One; 2015; 10(12):e0145125. PubMed ID: 26658942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin.
    Sjodt M; Macdonald R; Spirig T; Chan AH; Dickson CF; Fabian M; Olson JS; Gell DA; Clubb RT
    J Mol Biol; 2016 Mar; 428(6):1107-1129. PubMed ID: 25687963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis.
    Fabian M; Solomaha E; Olson JS; Maresso AW
    J Biol Chem; 2009 Nov; 284(46):32138-46. PubMed ID: 19759022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.