BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 22729939)

  • 1. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes.
    Song L; Liu M; Ono N; Bringhurst FR; Kronenberg HM; Guo J
    J Bone Miner Res; 2012 Nov; 27(11):2344-58. PubMed ID: 22729939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling.
    Sun C; Yuan H; Wang L; Wei X; Williams L; Krebsbach PH; Guan JL; Liu F
    J Bone Miner Res; 2016 Dec; 31(12):2227-2238. PubMed ID: 27391080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal deletion of β-catenin in osterix-expressing cells is necessary for bone growth and intermittent PTH-induced bone gain.
    Yu C; Xuan M; Zhang M; Yao Q; Zhang K; Zhang X; Guo J; Song L
    J Bone Miner Metab; 2018 Sep; 36(5):560-572. PubMed ID: 29124436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tsc1 Regulates the Balance Between Osteoblast and Adipocyte Differentiation Through Autophagy/Notch1/β-Catenin Cascade.
    Choi HK; Yuan H; Fang F; Wei X; Liu L; Li Q; Guan JL; Liu F
    J Bone Miner Res; 2018 Nov; 33(11):2021-2034. PubMed ID: 29924882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane protein 64 reciprocally regulates osteoblast and adipocyte differentiation by modulating Wnt/β-catenin signaling.
    Jeong BC; Kim TS; Kim HS; Lee SH; Choi Y
    Bone; 2015 Sep; 78():165-73. PubMed ID: 25979161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cbfβ governs osteoblast-adipocyte lineage commitment through enhancing β-catenin signaling and suppressing adipogenesis gene expression.
    Wu M; Wang Y; Shao JZ; Wang J; Chen W; Li YP
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10119-10124. PubMed ID: 28864530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrary Roles of Wnt/β-Catenin Signaling in BMP9-Induced Osteogenic and Adipogenic Differentiation of 3T3-L1 Preadipocytes.
    Liang K; Du Y; Chen L; Wang L; Li R; Yan Z; Liu Y
    Cell Biochem Biophys; 2020 Sep; 78(3):347-356. PubMed ID: 32720112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-catenin directly sequesters adipocytic and insulin sensitizing activities but not osteoblastic activity of PPARγ2 in marrow mesenchymal stem cells.
    Rahman S; Czernik PJ; Lu Y; Lecka-Czernik B
    PLoS One; 2012; 7(12):e51746. PubMed ID: 23272157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockdown of CDC20 promotes adipogenesis of bone marrow-derived stem cells by modulating β-catenin.
    Du Y; Liu Y; Zhou Y; Zhang P
    Stem Cell Res Ther; 2022 Sep; 13(1):443. PubMed ID: 36056439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone-derived sclerostin and Wnt/β-catenin signaling regulate PDGFRα
    Kim SP; Da H; Wang L; Taketo MM; Wan M; Riddle RC
    FASEB J; 2021 Nov; 35(11):e21957. PubMed ID: 34606641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway.
    Luo Y; Zhang Y; Miao G; Zhang Y; Liu Y; Huang Y
    Arch Oral Biol; 2019 Jan; 97():176-184. PubMed ID: 30391794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPARγ and Wnt Signaling in Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.
    Yuan Z; Li Q; Luo S; Liu Z; Luo D; Zhang B; Zhang D; Rao P; Xiao J
    Curr Stem Cell Res Ther; 2016; 11(3):216-25. PubMed ID: 25986621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycogen synthase kinase-3α/β inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage.
    Gambardella A; Nagaraju CK; O'Shea PJ; Mohanty ST; Kottam L; Pilling J; Sullivan M; Djerbi M; Koopmann W; Croucher PI; Bellantuono I
    J Bone Miner Res; 2011 Apr; 26(4):811-21. PubMed ID: 20939016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear factor I-C reciprocally regulates adipocyte and osteoblast differentiation
    Zhou J; Wang S; Qi Q; Yang X; Zhu E; Yuan H; Li X; Liu Y; Li X; Wang B
    FASEB J; 2017 May; 31(5):1939-1952. PubMed ID: 28122918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt/ß-catenin-mediated p53 suppression is indispensable for osteogenesis of mesenchymal progenitor cells.
    Zhou X; Beilter A; Xu Z; Gao R; Xiong S; Paulucci-Holthauzen A; Lozano G; de Crombrugghe B; Gorlick R
    Cell Death Dis; 2021 May; 12(6):521. PubMed ID: 34021120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways.
    Tang CY; Wu M; Zhao D; Edwards D; McVicar A; Luo Y; Zhu G; Wang Y; Zhou HD; Chen W; Li YP
    PLoS Genet; 2021 Jan; 17(1):e1009233. PubMed ID: 33476325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orcinol glucoside facilitates the shift of MSC fate to osteoblast and prevents adipogenesis via Wnt/β-catenin signaling pathway.
    Zhou X; Liu Z; Huang B; Yan H; Yang C; Li Q; Jin D
    Drug Des Devel Ther; 2019; 13():2703-2713. PubMed ID: 31496649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. atf4 promotes β-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells.
    Yu S; Zhu K; Lai Y; Zhao Z; Fan J; Im HJ; Chen D; Xiao G
    Int J Biol Sci; 2013; 9(3):256-66. PubMed ID: 23494915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway.
    Zhang RF; Wang Q; Zhang AA; Xu JG; Zhai LD; Yang XM; Liu XT
    Eur Rev Med Pharmacol Sci; 2018 May; 22(9):2860-2868. PubMed ID: 29771444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by a Phytoestrogen Diarylheptanoid from
    Sutjarit N; Thongon N; Weerachayaphorn J; Piyachaturawat P; Suksamrarn A; Suksen K; Papachristou DJ; Blair HC
    J Agric Food Chem; 2020 Sep; 68(37):9993-10002. PubMed ID: 32838526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.