BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 22730129)

  • 1. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance.
    Liao J; Sauer K
    J Bacteriol; 2012 Sep; 194(18):4823-36. PubMed ID: 22730129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.
    Liao J; Schurr MJ; Sauer K
    J Bacteriol; 2013 Aug; 195(15):3352-63. PubMed ID: 23687276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS.
    Gupta K; Marques CN; Petrova OE; Sauer K
    J Bacteriol; 2013 Nov; 195(21):4975-87. PubMed ID: 23995639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.
    Poudyal B; Sauer K
    Antimicrob Agents Chemother; 2018 Feb; 62(2):. PubMed ID: 29180529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ.
    Chambers JR; Sauer K
    J Bacteriol; 2013 Oct; 195(20):4678-88. PubMed ID: 23935054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PA3177 Gene Encodes an Active Diguanylate Cyclase That Contributes to Biofilm Antimicrobial Tolerance but Not Biofilm Formation by Pseudomonas aeruginosa.
    Poudyal B; Sauer K
    Antimicrob Agents Chemother; 2018 Oct; 62(10):. PubMed ID: 30082282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa.
    Gupta K; Liao J; Petrova OE; Cherny KE; Sauer K
    Mol Microbiol; 2014 May; 92(3):488-506. PubMed ID: 24655293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility of Pseudomonas aeruginosa Dispersed Cells to Antimicrobial Agents Is Dependent on the Dispersion Cue and Class of the Antimicrobial Agent Used.
    Chambers JR; Cherny KE; Sauer K
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28971863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas aeruginosa Biofilm Antibiotic Resistance Gene
    Hall CW; Hinz AJ; Gagnon LB; Zhang L; Nadeau JP; Copeland S; Saha B; Mah TF
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance.
    Dingemans J; Poudyal B; Sondermann H; Sauer K
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29848761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance.
    Mah TF; Pitts B; Pellock B; Walker GC; Stewart PS; O'Toole GA
    Nature; 2003 Nov; 426(6964):306-10. PubMed ID: 14628055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BrlR from Pseudomonas aeruginosa is a receptor for both cyclic di-GMP and pyocyanin.
    Wang F; He Q; Yin J; Xu S; Hu W; Gu L
    Nat Commun; 2018 Jul; 9(1):2563. PubMed ID: 29967320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor.
    Chambers JR; Liao J; Schurr MJ; Sauer K
    Mol Microbiol; 2014 May; 92(3):471-87. PubMed ID: 24612375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structure of BrlR reveals a potential pyocyanin binding site.
    Raju H; Sundararajan R; Sharma R
    FEBS Lett; 2018 Jan; 592(2):256-262. PubMed ID: 29251765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divide and conquer: the Pseudomonas aeruginosa two-component hybrid SagS enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits.
    Petrova OE; Gupta K; Liao J; Goodwine JS; Sauer K
    Environ Microbiol; 2017 May; 19(5):2005-2024. PubMed ID: 28263038
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Thöming JG; Häussler S
    Front Cell Infect Microbiol; 2022; 12():851784. PubMed ID: 35295755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.
    Beaudoin T; Zhang L; Hinz AJ; Parr CJ; Mah TF
    J Bacteriol; 2012 Jun; 194(12):3128-36. PubMed ID: 22505683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells.
    Anderson GG; Moreau-Marquis S; Stanton BA; O'Toole GA
    Infect Immun; 2008 Apr; 76(4):1423-33. PubMed ID: 18212077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single and combination antibiotic susceptibilities of planktonic, adherent, and biofilm-grown Pseudomonas aeruginosa isolates cultured from sputa of adults with cystic fibrosis.
    Aaron SD; Ferris W; Ramotar K; Vandemheen K; Chan F; Saginur R
    J Clin Microbiol; 2002 Nov; 40(11):4172-9. PubMed ID: 12409393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms.
    Field TR; White A; Elborn JS; Tunney MM
    Eur J Clin Microbiol Infect Dis; 2005 Oct; 24(10):677-87. PubMed ID: 16249934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.