BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22730169)

  • 21. The optimization of formic acid hydrolysis of xylose in furfural production.
    Yang W; Li P; Bo D; Chang H
    Carbohydr Res; 2012 Aug; 357():53-61. PubMed ID: 22703600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.
    Kimura H; Nakahara M; Matubayasi N
    J Phys Chem A; 2013 Mar; 117(10):2102-13. PubMed ID: 23458365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization with Response Surface Methodology of Microwave-Assisted Conversion of Xylose to Furfural.
    Padilla-Rascón C; Romero-García JM; Ruiz E; Castro E
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32781612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen.
    Agirrezabal-Telleria I; Larreategui A; Requies J; Güemez MB; Arias PL
    Bioresour Technol; 2011 Aug; 102(16):7478-85. PubMed ID: 21624830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural.
    Karinen R; Vilonen K; Niemelä M
    ChemSusChem; 2011 Aug; 4(8):1002-16. PubMed ID: 21728248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Furfural Production from d-Xylose and Xylan by Using Stable Nafion NR50 and NaCl in a Microwave-Assisted Biphasic Reaction.
    Le Guenic S; Gergela D; Ceballos C; Delbecq F; Len C
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27556444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid.
    Zhang L; Yu H; Wang P; Dong H; Peng X
    Bioresour Technol; 2013 Feb; 130():110-6. PubMed ID: 23306118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclopentyl methyl ether: a green co-solvent for the selective dehydration of lignocellulosic pentoses to furfural.
    Campos Molina MJ; Mariscal R; Ojeda M; López Granados M
    Bioresour Technol; 2012 Dec; 126():321-7. PubMed ID: 23128237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrochloric acid-catalyzed coproduction of furfural and 5-(chloromethyl)furfural assisted by a phase transfer catalyst.
    Bhat NS; Vinod N; Onkarappa SB; Dutta S
    Carbohydr Res; 2020 Oct; 496():108105. PubMed ID: 32777538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production.
    Vázquez M; Oliva M; Téllez-Luis SJ; Ramírez JA
    Bioresour Technol; 2007 Nov; 98(16):3053-60. PubMed ID: 17145181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acidic cesium salts of 12-tungstophosphoric acid as catalysts for the dehydration of xylose into furfural.
    Dias AS; Lima S; Pillinger M; Valente AA
    Carbohydr Res; 2006 Dec; 341(18):2946-53. PubMed ID: 17081510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical insight into the conversion of xylose to furfural in the gas phase and water.
    Wang M; Liu C; Li Q; Xu X
    J Mol Model; 2015 Nov; 21(11):296. PubMed ID: 26518688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetics of xylose decomposition as determined using quantum mechanics modeling.
    Nimlos MR; Qian X; Davis M; Himmel ME; Johnson DK
    J Phys Chem A; 2006 Oct; 110(42):11824-38. PubMed ID: 17048814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-catalyzed furfural production in biobased biphasic systems: from pure sugars to direct use of crude xylose effluents as feedstock.
    vom Stein T; Grande PM; Leitner W; de María PD
    ChemSusChem; 2011 Nov; 4(11):1592-4. PubMed ID: 21994162
    [No Abstract]   [Full Text] [Related]  

  • 36. Microemulsion and Sol-Gel Synthesized ZrO₂-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural.
    Parejas A; Montes V; Hidalgo-Carrillo J; Sánchez-López E; Marinas A; Urbano FJ
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst.
    Zhang L; Yu H; Wang P; Li Y
    Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels.
    Antunes MM; Russo PA; Wiper PV; Veiga JM; Pillinger M; Mafra L; Evtuguin DV; Pinna N; Valente AA
    ChemSusChem; 2014 Mar; 7(3):804-12. PubMed ID: 24497470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid.
    Zhang L; Yu H; Wang P
    Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic study of empty fruit bunch using hot liquid water and dilute acid.
    Kim JS; Choi WI; Kang M; Park JY; Lee JS
    Appl Biochem Biotechnol; 2012 Jul; 167(6):1527-39. PubMed ID: 22238014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.