These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 22730241)
1. Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice. Li Y; Zhang Z; Nie Y; Zhang L; Wang Z Proteomics; 2012 Aug; 12(14):2340-54. PubMed ID: 22730241 [TBL] [Abstract][Full Text] [Related]
2. Comparative proteomic analysis of methyl jasmonate-induced defense responses in different rice cultivars. Li Y; Nie Y; Zhang Z; Ye Z; Zou X; Zhang L; Wang Z Proteomics; 2014 May; 14(9):1088-101. PubMed ID: 24505015 [TBL] [Abstract][Full Text] [Related]
3. Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Liao M; Li Y; Wang Z Proteomics; 2009 May; 9(10):2809-19. PubMed ID: 19405028 [TBL] [Abstract][Full Text] [Related]
4. AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.). Zheng Y; Zheng W; Lin F; Zhang Y; Yi Y; Wang B; Lu G; Wang Z; Wu W Mol Plant Microbe Interact; 2011 Jan; 24(1):13-7. PubMed ID: 20879839 [TBL] [Abstract][Full Text] [Related]
5. Over-Expression of Rice CBS Domain Containing Protein, OsCBSX3, Confers Rice Resistance to Magnaporthe oryzae Inoculation. Mou S; Shi L; Lin W; Liu Y; Shen L; Guan D; He S Int J Mol Sci; 2015 Jul; 16(7):15903-17. PubMed ID: 26184180 [TBL] [Abstract][Full Text] [Related]
6. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Jiang CJ; Shimono M; Sugano S; Kojima M; Liu X; Inoue H; Sakakibara H; Takatsuji H Mol Plant Microbe Interact; 2013 Mar; 26(3):287-96. PubMed ID: 23234404 [TBL] [Abstract][Full Text] [Related]
7. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Iwai T; Seo S; Mitsuhara I; Ohashi Y Plant Cell Physiol; 2007 Jul; 48(7):915-24. PubMed ID: 17517758 [TBL] [Abstract][Full Text] [Related]
8. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Jiang CJ; Shimono M; Maeda S; Inoue H; Mori M; Hasegawa M; Sugano S; Takatsuji H Mol Plant Microbe Interact; 2009 Jul; 22(7):820-9. PubMed ID: 19522564 [TBL] [Abstract][Full Text] [Related]
9. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Xie XZ; Xue YJ; Zhou JJ; Zhang B; Chang H; Takano M Mol Plant; 2011 Jul; 4(4):688-96. PubMed ID: 21357645 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. De Vleesschauwer D; Djavaheri M; Bakker PA; Höfte M Plant Physiol; 2008 Dec; 148(4):1996-2012. PubMed ID: 18945932 [TBL] [Abstract][Full Text] [Related]
11. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Cai K; Gao D; Luo S; Zeng R; Yang J; Zhu X Physiol Plant; 2008 Oct; 134(2):324-33. PubMed ID: 18513376 [TBL] [Abstract][Full Text] [Related]
12. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Shen X; Liu H; Yuan B; Li X; Xu C; Wang S Plant Cell Environ; 2011 Feb; 34(2):179-91. PubMed ID: 20807375 [TBL] [Abstract][Full Text] [Related]
13. Comparative phosphoproteomic analysis of blast resistant and susceptible rice cultivars in response to salicylic acid. Sun R; Qin S; Zhang T; Wang Z; Li H; Li Y; Nie Y BMC Plant Biol; 2019 Oct; 19(1):454. PubMed ID: 31660870 [TBL] [Abstract][Full Text] [Related]
14. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Jiang CJ; Shimono M; Sugano S; Kojima M; Yazawa K; Yoshida R; Inoue H; Hayashi N; Sakakibara H; Takatsuji H Mol Plant Microbe Interact; 2010 Jun; 23(6):791-8. PubMed ID: 20459318 [TBL] [Abstract][Full Text] [Related]
15. Protein elicitor PemG1 from Magnaporthe grisea induces systemic acquired resistance (SAR) in plants. Peng DH; Qiu DW; Ruan LF; Zhou CF; Sun M Mol Plant Microbe Interact; 2011 Oct; 24(10):1239-46. PubMed ID: 21770770 [TBL] [Abstract][Full Text] [Related]
16. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Ribot C; Césari S; Abidi I; Chalvon V; Bournaud C; Vallet J; Lebrun MH; Morel JB; Kroj T Plant J; 2013 Apr; 74(1):1-12. PubMed ID: 23279638 [TBL] [Abstract][Full Text] [Related]
17. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Yang Y; Qi M; Mei C Plant J; 2004 Dec; 40(6):909-19. PubMed ID: 15584956 [TBL] [Abstract][Full Text] [Related]
18. Effects of exogenous salicylic acid and pH on pathogenicity of biotrophy-associated secreted protein 1 (BAS1)-overexpressing strain, Magnaporthe oryzae. Yang J; Wang Y; Liu L; Liu L; Wang C; Wang C; Li C Environ Sci Pollut Res Int; 2019 May; 26(14):13725-13737. PubMed ID: 29931642 [TBL] [Abstract][Full Text] [Related]
19. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Asano T; Hayashi N; Kobayashi M; Aoki N; Miyao A; Mitsuhara I; Ichikawa H; Komatsu S; Hirochika H; Kikuchi S; Ohsugi R Plant J; 2012 Jan; 69(1):26-36. PubMed ID: 21883553 [TBL] [Abstract][Full Text] [Related]
20. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. Wang Y; Wu J; Park ZY; Kim SG; Rakwal R; Agrawal GK; Kim ST; Kang KY J Proteome Res; 2011 Jul; 10(7):3136-48. PubMed ID: 21563842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]