These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22730314)

  • 1. Polyampholyte nanoparticles prepared by self-complexation of cationized poly(γ-glutamic acid) for protein carriers.
    Shen H; Akagi T; Akashi M
    Macromol Biosci; 2012 Aug; 12(8):1100-5. PubMed ID: 22730314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of size tunable amphiphilic poly(amino acid) nanoparticles.
    Kim H; Akagi T; Akashi M
    Macromol Biosci; 2009 Sep; 9(9):842-8. PubMed ID: 19422015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid).
    Kuo YC; Yu HW
    Int J Pharm; 2011 Sep; 416(1):365-75. PubMed ID: 21736932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethyleneimine/poly-(γ-glutamic acid)/poly(lactide-co-glycolide) nanoparticles for loading and releasing antiretroviral drug.
    Kuo YC; Yu HW
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):158-64. PubMed ID: 21764569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier.
    Akagi T; Kaneko T; Kida T; Akashi M
    J Control Release; 2005 Nov; 108(2-3):226-36. PubMed ID: 16125267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of pixantrone/poly(γ-glutamic acid) nanoparticles through complex self-assembly for oral chemotherapy.
    Meng L; Ji B; Huang W; Wang D; Tong G; Su Y; Zhu X; Yan D
    Macromol Biosci; 2012 Nov; 12(11):1524-33. PubMed ID: 23008063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intranasal immunization with poly(γ-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity.
    Matsuo K; Koizumi H; Akashi M; Nakagawa S; Fujita T; Yamamoto A; Okada N
    J Control Release; 2011 Jun; 152(2):310-6. PubMed ID: 21402114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(gamma-glutamic acid).
    Akagi T; Kaneko T; Kida T; Akashi M
    J Biomater Sci Polym Ed; 2006; 17(8):875-92. PubMed ID: 17024878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo.
    Shima F; Uto T; Akagi T; Baba M; Akashi M
    Acta Biomater; 2013 Nov; 9(11):8894-901. PubMed ID: 23770225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid).
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives.
    Akagi T; Wang X; Uto T; Baba M; Akashi M
    Biomaterials; 2007 Aug; 28(23):3427-36. PubMed ID: 17482261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coassemblies of the Anionic Polypeptide γ-PGA and Cationic β-Sheet Peptides for Drug Delivery to Mitochondria.
    Cohen-Erez I; Rapaport H
    Biomacromolecules; 2015 Dec; 16(12):3827-35. PubMed ID: 26505209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of nanoparticles based on amphiphilic copolymers of poly(γ-glutamic acid co-L-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as a potential drug delivery carrier.
    Liu X; Su S; Wei F; Rong X; Yang Z; Liu J; Li M; Wu Y
    J Colloid Interface Sci; 2014 Jan; 413():54-64. PubMed ID: 24183430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation, characterization and application of arginine-modified chitosan/γ-poly glutamic acid nanoparticles as carrier for curcumin.
    Su Z; Han C; Liu E; Zhang F; Liu B; Meng X
    Int J Biol Macromol; 2021 Jan; 168():215-222. PubMed ID: 33309665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells.
    Yoshikawa T; Okada N; Oda A; Matsuo K; Matsuo K; Kayamuro H; Ishii Y; Yoshinaga T; Akagi T; Akashi M; Nakagawa S
    Vaccine; 2008 Mar; 26(10):1303-13. PubMed ID: 18255205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone.
    Ryu M; Nakazawa T; Akagi T; Tanaka T; Watanabe R; Yasuda M; Himori N; Maruyama K; Yamashita T; Abe T; Akashi M; Nishida K
    J Control Release; 2011 Apr; 151(1):65-73. PubMed ID: 21130816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.
    Yoshikawa T; Okada N; Oda A; Matsuo K; Matsuo K; Mukai Y; Yoshioka Y; Akagi T; Akashi M; Nakagawa S
    Biochem Biophys Res Commun; 2008 Feb; 366(2):408-13. PubMed ID: 18068668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.