These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22730431)

  • 41. IUPHAR-DB: updated database content and new features.
    Sharman JL; Benson HE; Pawson AJ; Lukito V; Mpamhanga CP; Bombail V; Davenport AP; Peters JA; Spedding M; Harmar AJ;
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1083-8. PubMed ID: 23087376
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of A Drug Target-based Classification System using Molecular Descriptors.
    Lu J; Zhang P; Bi Y; Luo X
    Comb Chem High Throughput Screen; 2016; 19(2):129-35. PubMed ID: 26552442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Predicting Drug-Target Interactions with Neighbor Interaction Information and Discriminative Low-rank Representation.
    Peng L; Liao B; Zhu W; Li Z
    Curr Protein Pept Sci; 2018; 19(5):455-467. PubMed ID: 27829345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linear and Kernel Model Construction Methods for Predicting Drug-Target Interactions in a Chemogenomic Framework.
    Yamanishi Y
    Methods Mol Biol; 2018; 1825():355-368. PubMed ID: 30334213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PPDTS: Predicting potential drug-target interactions based on network similarity.
    Wang W; Wang Y; Zhang Y; Liu D; Zhang H; Wang X
    IET Syst Biol; 2022 Feb; 16(1):18-27. PubMed ID: 34783172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization.
    Mongia A; Majumdar A
    PLoS One; 2020; 15(1):e0226484. PubMed ID: 31945078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TargetNet: a web service for predicting potential drug-target interaction profiling via multi-target SAR models.
    Yao ZJ; Dong J; Che YJ; Zhu MF; Wen M; Wang NN; Wang S; Lu AP; Cao DS
    J Comput Aided Mol Des; 2016 May; 30(5):413-24. PubMed ID: 27167132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Method of Optimizing Weight Allocation in Data Integration Based on Q-Learning for Drug-Target Interaction Prediction.
    Sun J; Lu Y; Cui L; Fu Q; Wu H; Chen J
    Front Cell Dev Biol; 2022; 10():794413. PubMed ID: 35356288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
    Huang YA; You ZH; Chen X
    Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Prediction of network drug target based on improved model of bipartite graph valuation].
    Liu X; Lu P; Zuo X; Chen J; Yang H; Yang Y; Gao Y
    Zhongguo Zhong Yao Za Zhi; 2012 Jan; 37(2):125-9. PubMed ID: 22737836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile.
    van Laarhoven T; Marchiori E
    PLoS One; 2013; 8(6):e66952. PubMed ID: 23840562
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-ligand interaction prediction: an improved chemogenomics approach.
    Jacob L; Vert JP
    Bioinformatics; 2008 Oct; 24(19):2149-56. PubMed ID: 18676415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning with multiple pairwise kernels for drug bioactivity prediction.
    Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J
    Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drug target prediction using adverse event report systems: a pharmacogenomic approach.
    Takarabe M; Kotera M; Nishimura Y; Goto S; Yamanishi Y
    Bioinformatics; 2012 Sep; 28(18):i611-i618. PubMed ID: 22962489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assay Related Target Similarity (ARTS) - chemogenomics approach for quantitative comparison of biological targets.
    Bieler M; Heilker R; Köppen H; Schneider G
    J Chem Inf Model; 2011 Aug; 51(8):1897-905. PubMed ID: 21761911
    [TBL] [Abstract][Full Text] [Related]  

  • 58. IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data.
    Sharman JL; Mpamhanga CP; Spedding M; Germain P; Staels B; Dacquet C; Laudet V; Harmar AJ;
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D534-8. PubMed ID: 21087994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction.
    Öztürk H; Ozkirimli E; Özgür A
    BMC Bioinformatics; 2016 Mar; 17():128. PubMed ID: 26987649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information.
    Zhang W; Chen Y; Li D
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.