These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22730918)

  • 1. Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.
    Li Q; Wang ZL; Li GR; Guo R; Ding LX; Tong YX
    Nano Lett; 2012 Jul; 12(7):3803-7. PubMed ID: 22730918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable template-assisted electrodeposition of single- and multi-walled nanotube arrays for electrochemical energy storage.
    Wang ZL; Guo R; Ding LX; Tong YX; Li GR
    Sci Rep; 2013; 3():1204. PubMed ID: 23393615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes.
    Bao L; Zang J; Li X
    Nano Lett; 2011 Mar; 11(3):1215-20. PubMed ID: 21306113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.
    Lang X; Hirata A; Fujita T; Chen M
    Nat Nanotechnol; 2011 Apr; 6(4):232-6. PubMed ID: 21336267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Production of Mn₃O₄/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma.
    Zhou Y; Guo L; Shi W; Zou X; Xiang B; Xing S
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29795008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage.
    Wang ZL; He XJ; Ye SH; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):642-7. PubMed ID: 24313311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co(OH)2/RGO/NiO sandwich-structured nanotube arrays with special surface and synergistic effects as high-performance positive electrodes for asymmetric supercapacitors.
    Xu H; Zhang C; Zhou W; Li GR
    Nanoscale; 2015 Oct; 7(40):16932-42. PubMed ID: 26416358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of TiO
    Ahmed F; Pervez SA; Aljaafari A; Alshoaibi A; Abuhimd H; Oh J; Koo BH
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31683615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Radiation Method for Preparing MnO₂/BC Monolith Hybrids with Outstanding Supercapacitance Performance.
    Yang F; Liu X; Mi R; Yuan L; Yang X; Zhong M; Fu Z; Wang C; Tang Y
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: High performance supercapacitive electrode.
    Pande SA; Pandit B; Sankapal BR
    J Colloid Interface Sci; 2018 Mar; 514():740-749. PubMed ID: 29316530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.
    Chen W; Xia C; Alshareef HN
    ACS Nano; 2014 Sep; 8(9):9531-41. PubMed ID: 25133989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes.
    Hou Y; Cheng Y; Hobson T; Liu J
    Nano Lett; 2010 Jul; 10(7):2727-33. PubMed ID: 20586479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon/MnO(2) double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors.
    Li Q; Lu XF; Xu H; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2726-33. PubMed ID: 24533678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphitic Carbon with MnO/Mn
    Lam DV; Nguyen UNT; Roh E; Choi W; Kim JH; Kim H; Lee SM
    Small; 2021 Jul; 17(29):e2100670. PubMed ID: 34145746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P-Doped NiCo
    Lin J; Wang Y; Zheng X; Liang H; Jia H; Qi J; Cao J; Tu J; Fei W; Feng J
    Dalton Trans; 2018 Jul; 47(26):8771-8778. PubMed ID: 29916517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypyrrole-MnO₂-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability.
    Yun TG; Hwang Bi; Kim D; Hyun S; Han SM
    ACS Appl Mater Interfaces; 2015 May; 7(17):9228-34. PubMed ID: 25856260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall-like hierarchical metal oxide nanosheet arrays grown on carbon cloth for excellent supercapacitor electrodes.
    Huang Z; Zhang Z; Qi X; Ren X; Xu G; Wan P; Sun X; Zhang H
    Nanoscale; 2016 Jul; 8(27):13273-9. PubMed ID: 27336591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.
    Tsai YC; Yang WD; Lee KC; Huang CM
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.