These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22731619)

  • 1. Subject-specific musculoskeletal model of the lower limb in a lying and standing position.
    Hausselle J; Assi A; El Helou A; Jolivet E; Pillet H; Dion E; Bonneau D; Skalli W
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):480-7. PubMed ID: 22731619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle parameters estimation based on biplanar radiography.
    Dubois G; Rouch P; Bonneau D; Gennisson JL; Skalli W
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1592-8. PubMed ID: 27082150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional model of the feline hindlimb.
    Burkholder TJ; Nichols TR
    J Morphol; 2004 Jul; 261(1):118-29. PubMed ID: 15164372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
    Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR
    J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mass-length scaling law for modeling muscle strength in the lower limb.
    Correa TA; Pandy MG
    J Biomech; 2011 Nov; 44(16):2782-9. PubMed ID: 21937046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational approach to calculate personalized pennation angle based on MRI: effect on motion analysis.
    Chincisan A; Tecante K; Becker M; Magnenat-Thalmann N; Hurschler C; Choi HF
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):683-93. PubMed ID: 26137896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between line and surface mesh models to represent the rotator cuff muscle geometry in musculoskeletal models.
    Hoffmann M; Haering D; Begon M
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1175-1181. PubMed ID: 28628751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function.
    Wu W; Lee PVS; Bryant AL; Galea M; Ackland DC
    J Biomech; 2016 Nov; 49(15):3626-3634. PubMed ID: 28327299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transformation method to estimate muscle attachments based on three bony landmarks.
    Matias R; Andrade C; Veloso AP
    J Biomech; 2009 Feb; 42(3):331-5. PubMed ID: 19136112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling muscle activity in standing with considerations for bone safety.
    Munih M; Kralj A
    J Biomech; 1997 Jan; 30(1):49-56. PubMed ID: 8970924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anatomically based finite element model of the lower limbs in the seated posture.
    Cox SL; Mithraratne K; Smith NP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6327-30. PubMed ID: 18003468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower limb estimation from sparse landmarks using an articulated shape model.
    Zhang J; Fernandez J; Hislop-Jambrich J; Besier TF
    J Biomech; 2016 Dec; 49(16):3875-3881. PubMed ID: 28573974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships of 35 lower limb muscles to height and body mass quantified using MRI.
    Handsfield GG; Meyer CH; Hart JM; Abel MF; Blemker SS
    J Biomech; 2014 Feb; 47(3):631-8. PubMed ID: 24368144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling.
    Nolte D; Ko ST; Bull AMJ; Kedgley AE
    Gait Posture; 2020 Mar; 77():269-275. PubMed ID: 32092603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.
    Desailly E; Sardain P; Khouri N; Yepremian D; Lacouture P
    J Biomech; 2010 Sep; 43(13):2601-7. PubMed ID: 20627304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musculoskeletal model of the upper limb based on the visible human male dataset.
    Garner BA; Pandy MG
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):93-126. PubMed ID: 11264863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy.
    Diogo R; Esteve-Altava B; Smith C; Boughner JC; Rasskin-Gutman D
    PLoS One; 2015; 10(10):e0140030. PubMed ID: 26452269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bending moments in lower extremity bones for two standing postures.
    Munih M; Kralj A; Bajd T
    J Biomed Eng; 1992 Jul; 14(4):293-302. PubMed ID: 1513134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.