These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22731745)

  • 1. Hypoelectronic dirhenaboranes having eight to twelve vertices: internal versus surface rhenium-rhenium bonding.
    Lupan A; King RB
    Inorg Chem; 2012 Jul; 51(14):7609-16. PubMed ID: 22731745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From closo to isocloso structures and beyond in cobaltaboranes with 9 to 12 vertices.
    King RB; Silaghi-Dumitrescu I; Sovago I
    Inorg Chem; 2009 Nov; 48(21):10117-25. PubMed ID: 19791775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spherical Closo Deltahedra with Surface Metal-Metal Multiple Bonding versus Oblate Deltahedra with Internal Metal-Metal Bonding in Dichromadicarbaborane Structures: The Nature of Stone's Icosahedral Dichromadicarbaborane.
    Jákó S; Lupan A; Kun AZ; King RB
    Inorg Chem; 2019 Mar; 58(6):3825-3837. PubMed ID: 30821466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited occurrence of isocloso deltahedra with 9 to 12 vertices in low-energy hypoelectronic diferradicarbaborane structures.
    Lupan A; King RB
    Inorg Chem; 2011 Oct; 50(19):9571-7. PubMed ID: 21894923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deltahedral ferratricarbaboranes: analogues of ferrocene.
    Lupan A; King RB
    Dalton Trans; 2014 Apr; 43(13):4993-5000. PubMed ID: 24169923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prevalence of isocloso deltahedra in low-energy hypoelectronic metalladicarbaboranes with a single metal vertex: manganese and rhenium derivatives.
    Lupan A; King RB
    Dalton Trans; 2012 Jun; 41(23):7073-81. PubMed ID: 22555801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oblate deltahedra in dimetallaboranes: geometry and chemical bonding.
    King RB
    Inorg Chem; 2006 Oct; 45(20):8211-6. PubMed ID: 16999420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deviations from the Most Spherical Deltahedra in Rhenatricarbaboranes Having 2n + 2 Wadean Skeletal Electrons.
    Attia AAA; Lupan A; King RB
    Inorg Chem; 2017 Dec; 56(24):15015-15025. PubMed ID: 29185721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdatricarbaboranes as examples of isocloso metallaborane deltahedra with three carbon vertices.
    Lupan A; King RB
    J Comput Chem; 2016 Jan; 37(1):64-9. PubMed ID: 26183318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonspherical Deltahedra in Low-Energy Dicarbalane Structures Testing the Wade-Mingos Rules: The Regular Icosahedron Is Not Favored for the 12-Vertex Dicarbalane.
    Attia AA; Lupan A; King RB
    Inorg Chem; 2015 Dec; 54(23):11377-84. PubMed ID: 26545039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonsphericity in diferratetracarbaboranes having 2n + 2 Wadean skeletal electrons: deviations from closo deltahedral geometries and high-energy kinetically stable isomers.
    Attia AAA; Lupan A; King RB
    Phys Chem Chem Phys; 2020 Jan; 22(4):2437-2448. PubMed ID: 31939955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral Rhenadicarbaboranes with Re(CO)
    Attia AAA; Lupan A; Silaghi-Dumitrescu R; King RB
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31892168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional study of 8- and 11-vertex polyhedral borane structures: comparison with bare germanium clusters.
    King RB; Silaghi-Dumitrescu I; Lupan A
    Inorg Chem; 2005 Oct; 44(22):7819-24. PubMed ID: 16241131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms.
    Le Guennic B; Jiao H; Kahlal S; Saillard JY; Halet JF; Ghosh S; Shang M; Beatty AM; Rheingold AL; Fehlner TP
    J Am Chem Soc; 2004 Mar; 126(10):3203-17. PubMed ID: 15012150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoelectronicity and Chirality in Dimetallaboranes of Group 9 Metals.
    Jákó S; Lupan A; Kun AZ; King RB
    Inorg Chem; 2017 Jan; 56(1):351-358. PubMed ID: 27936643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimetallocene carbonyls of the third-row transition metals: the quest for high-order metal-metal multiple bonds.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2009 Nov; 113(45):12470-7. PubMed ID: 19627131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetracarbalane structures: nido polyhedra and non-spherical deltahedra.
    Attia AA; Lupan A; King RB
    Dalton Trans; 2016 Jul; 45(28):11528-39. PubMed ID: 27351841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trivalent Polyhedra as Duals of Borane Deltahedra: From Molecular Endohedral Germanium Clusters to the Smallest Fullerenes.
    King RB
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.
    Li N; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Nov; 114(43):11670-80. PubMed ID: 20942474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paramagnetism in Metallacarboranes: The Polyhedral Chromadicarbaborane Systems.
    Jákó S; Lupan A; Kun AZ; King RB
    Inorg Chem; 2017 Sep; 56(18):11059-11065. PubMed ID: 28876056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.