These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22731828)

  • 1. Thermodynamic studies of ligand binding to the human homopentameric glycine receptor using isothermal titration calorimetry.
    Wöhri AB; Hillertz P; Eriksson PO; Meuller J; Dekker N; Snijder A
    Mol Membr Biol; 2013 Mar; 30(2):169-83. PubMed ID: 22731828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beta subunit determines the ligand binding properties of synaptic glycine receptors.
    Grudzinska J; Schemm R; Haeger S; Nicke A; Schmalzing G; Betz H; Laube B
    Neuron; 2005 Mar; 45(5):727-39. PubMed ID: 15748848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a new ligand binding domain in the alpha1 subunit of the inhibitory glycine receptor.
    Vafa B; Lewis TM; Cunningham AM; Jacques P; Lynch JW; Schofield PR
    J Neurochem; 1999 Nov; 73(5):2158-66. PubMed ID: 10537076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isothermal titration calorimetry for studying protein-ligand interactions.
    Damian L
    Methods Mol Biol; 2013; 1008():103-18. PubMed ID: 23729250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular disulfide loop motif of the inhibitory glycine receptor does not form the agonist binding site.
    Vandenberg RJ; Rajendra S; French CR; Barry PH; Schofield PR
    Mol Pharmacol; 1993 Jul; 44(1):198-203. PubMed ID: 8393521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.
    Rajendra S; Vandenberg RJ; Pierce KD; Cunningham AM; French PW; Barry PH; Schofield PR
    EMBO J; 1995 Jul; 14(13):2987-98. PubMed ID: 7621814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of gephyrin-glycine receptor affinity by multivalency.
    Maric HM; Kasaragod VB; Schindelin H
    ACS Chem Biol; 2014 Nov; 9(11):2554-62. PubMed ID: 25137389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isothermal titration calorimetry of protein-protein interactions.
    Pierce MM; Raman CS; Nall BT
    Methods; 1999 Oct; 19(2):213-21. PubMed ID: 10527727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain.
    Pless SA; Lynch JW
    J Biol Chem; 2009 Jun; 284(23):15847-56. PubMed ID: 19286654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of antibacterial magainin peptides to electrically neutral membranes: thermodynamics and structure.
    Wieprecht T; Beyermann M; Seelig J
    Biochemistry; 1999 Aug; 38(32):10377-87. PubMed ID: 10441132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural energetics of peptide recognition: angiotensin II/antibody binding.
    Murphy KP; Xie D; Garcia KC; Amzel LM; Freire E
    Proteins; 1993 Feb; 15(2):113-20. PubMed ID: 8441749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.
    Miller PS; Da Silva HM; Smart TG
    J Biol Chem; 2005 Nov; 280(45):37877-84. PubMed ID: 16144831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct agonist- and antagonist-binding sites on the glycine receptor.
    Vandenberg RJ; Handford CA; Schofield PR
    Neuron; 1992 Sep; 9(3):491-6. PubMed ID: 1326295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the thermodynamics of protein-lipid interactions by isothermal titration calorimetry.
    Swamy MJ; Sankhala RS
    Methods Mol Biol; 2013; 974():37-53. PubMed ID: 23404271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isothermal titration microcalorimetric studies for the binding of octenoyl-CoA to medium chain acyl-CoA dehydrogenase.
    Srivastava DK; Wang S; Peterson KL
    Biochemistry; 1997 May; 36(21):6359-66. PubMed ID: 9174351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of binding the mammalian high mobility group protein HMGA2 to poly(dA-dT)2 and poly(dA)-poly(dT).
    Cui T; Wei S; Brew K; Leng F
    J Mol Biol; 2005 Sep; 352(3):629-45. PubMed ID: 16109425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-affinity binding determined by titration calorimetry using a high-affinity coupling ligand: a thermodynamic study of ligand binding to protein tyrosine phosphatase 1B.
    Zhang YL; Zhang ZY
    Anal Biochem; 1998 Aug; 261(2):139-48. PubMed ID: 9716416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glycine receptor: pharmacological studies and mathematical modeling of the allosteric interaction between the glycine- and strychnine-binding sites.
    Marvizón JC; Vázquez J; García Calvo M; Mayor F; Ruíz Gómez A; Valdivieso F; Benavides J
    Mol Pharmacol; 1986 Dec; 30(6):590-7. PubMed ID: 3023812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors.
    Grenningloh G; Rienitz A; Schmitt B; Methfessel C; Zensen M; Beyreuther K; Gundelfinger ED; Betz H
    Nature; 1987 Jul 16-22; 328(6127):215-20. PubMed ID: 3037383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.