These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22731916)

  • 1. In situ atomic force microscopy tip-induced deformations and Raman spectroscopy characterization of single-wall carbon nanotubes.
    Araujo PT; Barbosa Neto NM; Chacham H; Carara SS; Soares JS; Souza AD; Cançado LG; de Oliveira AB; Batista RJ; Joselevich E; Dresselhaus MS; Jorio A
    Nano Lett; 2012 Aug; 12(8):4110-6. PubMed ID: 22731916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra.
    Yano TA; Inouye Y; Kawata S
    Nano Lett; 2006 Jun; 6(6):1269-73. PubMed ID: 16771592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes.
    Duan X; Son H; Gao B; Zhang J; Wu T; Samsonidze GG; Dresselhaus MS; Liu Z; Kong J
    Nano Lett; 2007 Jul; 7(7):2116-21. PubMed ID: 17567178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation.
    Tombler TW; Zhou C; Alexseyev L; Kong J; Dai H; Liu L; Jayanthi CS; Tang M; Wu SY
    Nature; 2000 Jun; 405(6788):769-72. PubMed ID: 10866192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
    Cronin SB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus MS; Tinkham M
    Phys Rev Lett; 2004 Oct; 93(16):167401. PubMed ID: 15525030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale imaging of carbon nanotubes using tip enhanced Raman spectroscopy in reflection mode.
    Roy D; Wang J; Welland ME
    Faraday Discuss; 2006; 132():215-25; discussion 227-47. PubMed ID: 16833119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes.
    López-Lorente AI; Simonet BM; Valcárcel M; Mizaikoff B
    Anal Chim Acta; 2013 Jul; 788():122-8. PubMed ID: 23845490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electric force microscopy.
    Barboza AP; Gomes AP; Archanjo BS; Araujo PT; Jorio A; Ferlauto AS; Mazzoni MS; Chacham H; Neves BR
    Phys Rev Lett; 2008 Jun; 100(25):256804. PubMed ID: 18643691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectroscopy of strained single-walled carbon nanotubes.
    Liu Z; Zhang J; Gao B
    Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-Assisted Regeneration of Single-Walled Carbon Nanotubes from Carbon Fragments.
    Lin D; Zhang S; Zheng Z; Hu W; Zhang J
    Small; 2018 Apr; 14(14):e1800033. PubMed ID: 29430828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.
    Gao B; Hartland GV; Huang L
    ACS Nano; 2012 Jun; 6(6):5083-90. PubMed ID: 22577898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging.
    John R; Shinde DB; Liu L; Ding F; Xu Z; Vijayan C; Pillai VK; Pradeep T
    ACS Nano; 2014 Jan; 8(1):234-42. PubMed ID: 24308315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes.
    Dillon EP; Crouse CA; Barron AR
    ACS Nano; 2008 Jan; 2(1):156-64. PubMed ID: 19206559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing Axial Chirality of Chiral Single-Wall Carbon Nanotubes by Helicity-Dependent Raman Spectra.
    Han S; Hung NT; Xie Y; Saito R; Zhang J; Tong L
    Nano Lett; 2023 Sep; 23(18):8454-8459. PubMed ID: 37704190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes.
    Tang L; Li T; Li C; Ling L; Zhang K; Yao Y
    Nanoscale; 2015 Dec; 7(46):19699-704. PubMed ID: 26553394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of nanotubes properties by Raman spectroscopy.
    Jorio A; Saito R; Dresselhaus G; Dresselhaus MS
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2311-36. PubMed ID: 15482981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.
    Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J
    Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.
    Hayashida T; Umemura K
    Colloids Surf B Biointerfaces; 2016 Jul; 143():526-531. PubMed ID: 27045980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.