These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

849 related articles for article (PubMed ID: 22731987)

  • 1. Toward almost closed genomes with GapFiller.
    Boetzer M; Pirovano W
    Genome Biol; 2012 Jun; 13(6):R56. PubMed ID: 22731987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GFinisher: a new strategy to refine and finish bacterial genome assemblies.
    Guizelini D; Raittz RT; Cruz LM; Souza EM; Steffens MB; Pedrosa FO
    Sci Rep; 2016 Oct; 6():34963. PubMed ID: 27721396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GapFiller: a de novo assembly approach to fill the gap within paired reads.
    Nadalin F; Vezzi F; Policriti A
    BMC Bioinformatics; 2012; 13 Suppl 14(Suppl 14):S8. PubMed ID: 23095524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGAP: an automated gap closing tool.
    Piro VC; Faoro H; Weiss VA; Steffens MB; Pedrosa FO; Souza EM; Raittz RT
    BMC Res Notes; 2014 Jun; 7():371. PubMed ID: 24938749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sealer: a scalable gap-closing application for finishing draft genomes.
    Paulino D; Warren RL; Vandervalk BP; Raymond A; Jackman SD; Birol I
    BMC Bioinformatics; 2015 Jul; 16(1):230. PubMed ID: 26209068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating genome assemblies with MAIA.
    Nijkamp J; Winterbach W; van den Broek M; Daran JM; Reinders M; de Ridder D
    Bioinformatics; 2010 Sep; 26(18):i433-9. PubMed ID: 20823304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue: correcting sequencing errors using consensus and context.
    Greenfield P; Duesing K; Papanicolaou A; Bauer DC
    Bioinformatics; 2014 Oct; 30(19):2723-32. PubMed ID: 24919879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-quality draft assemblies of mammalian genomes from massively parallel sequence data.
    Gnerre S; Maccallum I; Przybylski D; Ribeiro FJ; Burton JN; Walker BJ; Sharpe T; Hall G; Shea TP; Sykes S; Berlin AM; Aird D; Costello M; Daza R; Williams L; Nicol R; Gnirke A; Nusbaum C; Lander ES; Jaffe DB
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1513-8. PubMed ID: 21187386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
    Swain MT; Tsai IJ; Assefa SA; Newbold C; Berriman M; Otto TD
    Nat Protoc; 2012 Jun; 7(7):1260-84. PubMed ID: 22678431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GAGE: A critical evaluation of genome assemblies and assembly algorithms.
    Salzberg SL; Phillippy AM; Zimin A; Puiu D; Magoc T; Koren S; Treangen TJ; Schatz MC; Delcher AL; Roberts M; Marçais G; Pop M; Yorke JA
    Genome Res; 2012 Mar; 22(3):557-67. PubMed ID: 22147368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ScanIndel: a hybrid framework for indel detection via gapped alignment, split reads and de novo assembly.
    Yang R; Nelson AC; Henzler C; Thyagarajan B; Silverstein KA
    Genome Med; 2015 Dec; 7():127. PubMed ID: 26643039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FLASH: fast length adjustment of short reads to improve genome assemblies.
    Magoč T; Salzberg SL
    Bioinformatics; 2011 Nov; 27(21):2957-63. PubMed ID: 21903629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads.
    Lam KK; LaButti K; Khalak A; Tse D
    Bioinformatics; 2015 Oct; 31(19):3207-9. PubMed ID: 26040454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.