BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 22732481)

  • 1. Superelastic and shape memory properties of TixNb3Zr2Ta alloys.
    Zhu Y; Wang L; Wang M; Liu Z; Qin J; Zhang D; Lu W
    J Mech Behav Biomed Mater; 2012 Aug; 12():151-9. PubMed ID: 22732481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; Péron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superelasticity Evaluation of the Biocompatible Ti-17Nb-6Ta Alloy.
    Keshtta A; Gepreel MA
    J Healthc Eng; 2019; 2019():8353409. PubMed ID: 30728927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys.
    Sun F; Hao YL; Nowak S; Gloriant T; Laheurte P; Prima F
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1864-72. PubMed ID: 22098885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superelastic behavior of a β-type titanium alloy.
    Zhang DC; Mao YF; Yan M; Li JJ; Su EL; Li YL; Tan SW; Lin JG
    J Mech Behav Biomed Mater; 2013 Apr; 20():29-35. PubMed ID: 23455161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys.
    Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thermomechanical process on the microstructure and mechanical properties of a fully martensitic titanium-based biomedical alloy.
    Elmay W; Prima F; Gloriant T; Bolle B; Zhong Y; Patoor E; Laheurte P
    J Mech Behav Biomed Mater; 2013 Feb; 18():47-56. PubMed ID: 23246554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys.
    Ijaz MF; Kim HY; Hosoda H; Miyazaki S
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():11-20. PubMed ID: 25579891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Jun; 34():66-74. PubMed ID: 24561725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of pseudoelasticity and ductility of Beta III titanium alloy--application to orthodontic wires.
    Laheurte P; Eberhardt A; Philippe M; Deblock L
    Eur J Orthod; 2007 Feb; 29(1):8-13. PubMed ID: 16954181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-deposited Ti-Nb-Zr-Ta orthopedic alloys.
    Banerjee R; Nag S; Samuel S; Fraser HL
    J Biomed Mater Res A; 2006 Aug; 78(2):298-305. PubMed ID: 16637044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition.
    Li Q; Niinomi M; Hieda J; Nakai M; Cho K
    Acta Biomater; 2013 Aug; 9(8):8027-35. PubMed ID: 23624220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical, physical, and chemical characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr casting alloys.
    Ribeiro AL; Junior RC; Cardoso FF; Filho RB; Vaz LG
    J Mater Sci Mater Med; 2009 Aug; 20(8):1629-36. PubMed ID: 19337820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional fatigue behavior of superelastic beta Ti-22Nb-6Zr(at%) alloy for load-bearing biomedical applications.
    Sheremetyev V; Brailovski V; Prokoshkin S; Inaekyan K; Dubinskiy S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():935-44. PubMed ID: 26478389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications.
    Hao YL; Li SJ; Sun SY; Zheng CY; Yang R
    Acta Biomater; 2007 Mar; 3(2):277-86. PubMed ID: 17234466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.
    Zhang DC; Yang S; Wei M; Mao YF; Tan CG; Lin JG
    J Mech Behav Biomed Mater; 2012 Sep; 13():156-65. PubMed ID: 22842657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermomechanical treatment on the superelasticity of Ti-7.5Nb-4Mo-2Sn biomedical alloy.
    Zhang DC; Tan CG; Tang DM; Zhang Y; Lin JG; Wen CE
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():76-86. PubMed ID: 25280682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering.
    Kadletz PM; Motemani Y; Iannotta J; Salomon S; Khare C; Grossmann L; Maier HJ; Ludwig A; Schmahl WW
    ACS Comb Sci; 2018 Mar; 20(3):137-150. PubMed ID: 29356502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the surface wear resistance and biological properties of the Ti-Zr-Nb-Sn alloy for dental restoration.
    Hu X; Wei Q; Li CY; Deng JY; Liu S; Zhang LY
    Biomed Mater; 2010 Oct; 5(5):054107. PubMed ID: 20876964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.