These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 22732481)

  • 41. Effect of spatial design and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy.
    Sugino A; Ohtsuki C; Tsuru K; Hayakawa S; Nakano T; Okazaki Y; Osaka A
    Acta Biomater; 2009 Jan; 5(1):298-304. PubMed ID: 18706879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of phase transformations on dynamical elastic modulus and anelasticity of beta Ti-Nb-Fe alloys for biomedical applications.
    Chaves JM; Florêncio O; Silva PS; Marques PW; Afonso CR
    J Mech Behav Biomed Mater; 2015 Jun; 46():184-96. PubMed ID: 25796065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr.
    Niinomi M
    Biomaterials; 2003 Jul; 24(16):2673-83. PubMed ID: 12711513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation, structural, microstructural, mechanical and cytotoxic characterization of as-cast Ti-25Ta-Zr alloys.
    Kuroda PAB; de Freitas Quadros F; Sousa KDSJ; Donato TAG; de Araújo RO; Grandini CR
    J Mater Sci Mater Med; 2020 Jan; 31(2):19. PubMed ID: 31965338
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires--an in vitro study.
    Vijayalakshmi RD; Nagachandran KS; Kummi P; Jayakumar P
    Indian J Dent Res; 2009; 20(4):448-52. PubMed ID: 20139569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications.
    Zhao X; Niinomi M; Nakai M; Miyamoto G; Furuhara T
    Acta Biomater; 2011 Aug; 7(8):3230-6. PubMed ID: 21569873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of heat treatment and role of boron on sliding wear behaviour of β-type Ti-35Nb-7.2Zr-5.7Ta alloy in dry condition and in simulated body fluids.
    Majumdar P; Singh SB; Chakraborty M
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):284-97. PubMed ID: 21316616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.
    Rivard J; Brailovski V; Dubinskiy S; Prokoshkin S
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():421-33. PubMed ID: 25491847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermomechanical processing of In-containing β-type Ti-Nb alloys.
    Pilz S; Geissler D; Calin M; Eckert J; Zimmermann M; Freudenberger J; Gebert A
    J Mech Behav Biomed Mater; 2018 Mar; 79():283-291. PubMed ID: 29348069
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
    Guitar A; Vigna G; Luppo MI
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):156-63. PubMed ID: 19627819
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.
    Gabriel SB; de Almeida LH; Nunes CA; Dille J; Soares GA
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3319-24. PubMed ID: 23706216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical properties and surface characteristics of three archwire alloys.
    Krishnan V; Kumar KJ
    Angle Orthod; 2004 Dec; 74(6):825-31. PubMed ID: 15673147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of phase stability and processing on the mechanical properties of Ti-Nb based β Ti alloys.
    Kent D; Wang G; Dargusch M
    J Mech Behav Biomed Mater; 2013 Dec; 28():15-25. PubMed ID: 23973609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study on the mechanical properties and corrosion behavior of the new as-cast TZNT alloys for biomedical applications.
    Zareidoost A; Yousefpour M
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110725. PubMed ID: 32204036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure, castability and mechanical properties of commercially pure and alloyed titanium cast in graphite mould.
    Cheng WW; Ju CP; Lin JH
    J Oral Rehabil; 2007 Jul; 34(7):528-40. PubMed ID: 17559621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy.
    Acharya S; Bahl S; Dabas SS; Hassan S; Gopal V; Panicker AG; Manivasagam G; Suwas S; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109755. PubMed ID: 31349485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.
    Koike M; Hummel SK; Ball JD; Okabe T
    J Prosthet Dent; 2012 Jun; 107(6):393-9. PubMed ID: 22633596
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microstructure and elastic modulus evolution of TiTaNb alloys.
    Wei TY; Huang JC; Chao CY; Wei LL; Tsai MT; Chen YH
    J Mech Behav Biomed Mater; 2018 Oct; 86():224-231. PubMed ID: 29986297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.