These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22732533)

  • 1. Comparison of visible and near-infrared Raman cross-sections of explosives in solution and in the solid state.
    Emmons ED; Guicheteau JA; Fountain AW; Christesen SD
    Appl Spectrosc; 2012 Jun; 66(6):636-43. PubMed ID: 22732533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep ultraviolet resonance Raman excitation enables explosives detection.
    Tuschel DD; Mikhonin AV; Lemoff BE; Asher SA
    Appl Spectrosc; 2010 Apr; 64(4):425-32. PubMed ID: 20412628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet resonance Raman spectroscopy of explosives in solution and the solid state.
    Emmons ED; Tripathi A; Guicheteau JA; Fountain AW; Christesen SD
    J Phys Chem A; 2013 May; 117(20):4158-66. PubMed ID: 23656503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform.
    Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ
    Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution and Solid Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Ultraviolet (UV) 229 nm Photochemistry.
    Gares KL; Bykov SV; Brinzer T; Asher SA
    Appl Spectrosc; 2015 May; 69(5):545-54. PubMed ID: 25812170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate and transport of RDX, HMX, TNT and DNT in the volcanic soils of Hawaii: a laboratory and modeling study.
    Alavi G; Chung M; Lichwa J; D'Alessio M; Ray C
    J Hazard Mater; 2011 Jan; 185(2-3):1600-4. PubMed ID: 21087822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltammetric determination of nitroaromatic and nitramine explosives contamination in soil.
    Pon Saravanan N; Venugopalan S; Senthilkumar N; Santhosh P; Kavita B; Gurumallesh Prabu H
    Talanta; 2006 May; 69(3):656-62. PubMed ID: 18970618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman spectra of TNT and RDX using vibronic theory, excited-state gradient, and complex polarizability approximations.
    Al-Saidi WA; Asher SA; Norman P
    J Phys Chem A; 2012 Aug; 116(30):7862-72. PubMed ID: 22770527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution and solid trinitrotoluene (TNT) photochemistry: persistence of TNT-like ultraviolet (UV) resonance Raman bands.
    Gares KL; Bykov SV; Godugu B; Asher SA
    Appl Spectrosc; 2014; 68(1):49-56. PubMed ID: 24405954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.
    Bykov SV; Mao M; Gares KL; Asher SA
    Appl Spectrosc; 2015 Aug; 69(8):895-901. PubMed ID: 26162998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid detection of nitroaromatic and nitramine explosives on chromatographic paper and their reflectometric sensing on PVC tablets.
    Erçağ E; Uzer A; Eren S; Sağlam S; Filik H; Apak R
    Talanta; 2011 Sep; 85(4):2226-32. PubMed ID: 21872082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Ultraviolet Standoff Photoacoustic Spectroscopy of Trace Explosives.
    Zrimsek AB; Bykov SV; Asher SA
    Appl Spectrosc; 2019 Jun; 73(6):601-609. PubMed ID: 30012001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid screening of selected organic explosives by high performance liquid chromatography using reversed-phase monolithic columns.
    Paull B; Roux C; Dawson M; Doble P
    J Forensic Sci; 2004 Nov; 49(6):1181-6. PubMed ID: 15568688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of photo induced charge transfer mechanism of PEDOT with nitro groups of RDX, HMX and TNT explosives using anti-stokes and stokes Raman lines ratios.
    Ramachandran K; Kumari A; Nath Acharyya J; Chaudhary AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119360. PubMed ID: 33453599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic degradation of explosives contaminated water.
    Lee SJ; Son HS; Lee HK; Zoh KD
    Water Sci Technol; 2002; 46(11-12):139-45. PubMed ID: 12523745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument.
    Carter JC; Angel SM; Lawrence-Snyder M; Scaffidi J; Whipple RE; Reynolds JG
    Appl Spectrosc; 2005 Jun; 59(6):769-75. PubMed ID: 16053543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.