These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22732693)

  • 1. Frequency-specific, location-nonspecific adaptation of interaural time difference sensitivity.
    Brown AD; Kuznetsova MS; Spain WJ; Stecker GC
    Hear Res; 2012 Sep; 291(1-2):52-6. PubMed ID: 22732693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing sensitivity to interaural time differences at high modulation rates by introducing temporal jitter.
    Goupell MJ; Laback B; Majdak P
    J Acoust Soc Am; 2009 Nov; 126(5):2511-21. PubMed ID: 19894831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaural time difference thresholds as a function of frequency.
    Hartmann WM; Dunai L; Qu T
    Adv Exp Med Biol; 2013; 787():239-46. PubMed ID: 23716229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar Impacts of the Interaural Delay and Interaural Correlation on Binaural Gap Detection.
    Kong L; Xie Z; Lu L; Qu T; Wu X; Yan J; Li L
    PLoS One; 2015; 10(6):e0126342. PubMed ID: 26125970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal weighting functions for interaural time and level differences. II. The effect of binaurally synchronous temporal jitter.
    Brown AD; Stecker GC
    J Acoust Soc Am; 2011 Jan; 129(1):293-300. PubMed ID: 21303010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent or integrated processing of interaural time and level differences in human auditory cortex?
    Altmann CF; Terada S; Kashino M; Goto K; Mima T; Fukuyama H; Furukawa S
    Hear Res; 2014 Jun; 312():121-7. PubMed ID: 24709274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binaural image position distributions for phase-shifted low frequency tone bursts.
    Osman E; Tzuo HY
    J Acoust Soc Am; 2011 Jul; 130(1):302-11. PubMed ID: 21786900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateralization of noise-burst trains based on onset and ongoing interaural delays.
    Freyman RL; Balakrishnan U; Zurek PM
    J Acoust Soc Am; 2010 Jul; 128(1):320-31. PubMed ID: 20649227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of interaural time and intensity differences in the cat inferior colliculus.
    Caird D; Klinke R
    Exp Brain Res; 1987; 68(2):379-92. PubMed ID: 3691710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. No evidence for ITD-specific adaptation in the frequency following response.
    Gockel HE; Muhammed L; Farooq R; Plack CJ; Carlyon RP
    Adv Exp Med Biol; 2013; 787():231-8. PubMed ID: 23716228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-acuity spatial stream segregation.
    Middlebrooks JC
    Adv Exp Med Biol; 2013; 787():491-9. PubMed ID: 23716256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation in sound localization processing induced by interaural time difference in amplitude envelope at high frequencies.
    Kawashima T; Sato T
    PLoS One; 2012; 7(7):e41328. PubMed ID: 22848464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binaural release from masking in forward-masked intensity discrimination: evidence for effects of selective attention.
    Oberfeld D; Stahn P; Kuta M
    Hear Res; 2012 Dec; 294(1-2):1-9. PubMed ID: 23010335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective and subjective measures of pure-tone stream segregation based on interaural time differences.
    Füllgrabe C; Moore BC
    Hear Res; 2012 Sep; 291(1-2):24-33. PubMed ID: 22771780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved interaural timing of acoustic nerve stimulation affects sound localization in single-sided deaf cochlear implant users.
    Seebacher J; Franke-Trieger A; Weichbold V; Zorowka P; Stephan K
    Hear Res; 2019 Jan; 371():19-27. PubMed ID: 30439571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.