These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Laufen T; Mayer MP; Beisel C; Klostermeier D; Mogk A; Reinstein J; Bukau B Proc Natl Acad Sci U S A; 1999 May; 96(10):5452-7. PubMed ID: 10318904 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA. Kim SY; Sharma S; Hoskins JR; Wickner S J Biol Chem; 2002 Nov; 277(47):44778-83. PubMed ID: 12237299 [TBL] [Abstract][Full Text] [Related]
7. DnaJ-promoted binding of DnaK to multiple sites on σ32 in the presence of ATP. Noguchi A; Ikeda A; Mezaki M; Fukumori Y; Kanemori M J Bacteriol; 2014 May; 196(9):1694-703. PubMed ID: 24532774 [TBL] [Abstract][Full Text] [Related]
8. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related]
9. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. Rüdiger S; Schneider-Mergener J; Bukau B EMBO J; 2001 Mar; 20(5):1042-50. PubMed ID: 11230128 [TBL] [Abstract][Full Text] [Related]
10. Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates. Wawrzynów A; Zylicz M J Biol Chem; 1995 Aug; 270(33):19300-6. PubMed ID: 7642605 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787 [TBL] [Abstract][Full Text] [Related]
12. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro. Zmijewski MA; Kwiatkowska JM; Lipińska B Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982 [TBL] [Abstract][Full Text] [Related]
13. D-Peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. Bischofberger P; Han W; Feifel B; Schönfeld HJ; Christen P J Biol Chem; 2003 May; 278(21):19044-7. PubMed ID: 12637539 [TBL] [Abstract][Full Text] [Related]
14. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303 [TBL] [Abstract][Full Text] [Related]
15. DnaJ recruits DnaK to protein aggregates. Acebrón SP; Fernández-Sáiz V; Taneva SG; Moro F; Muga A J Biol Chem; 2008 Jan; 283(3):1381-1390. PubMed ID: 17984091 [TBL] [Abstract][Full Text] [Related]
16. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. Suh WC; Lu CZ; Gross CA J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of chaperone coordination during cotranslational protein folding in bacteria. Roeselová A; Maslen SL; Shivakumaraswamy S; Pellowe GA; Howell S; Joshi D; Redmond J; Kjær S; Skehel JM; Balchin D Mol Cell; 2024 Jul; 84(13):2455-2471.e8. PubMed ID: 38908370 [TBL] [Abstract][Full Text] [Related]
18. ATP hydrolysis is required for the DnaJ-dependent activation of DnaK chaperone for binding to both native and denatured protein substrates. Wawrzynów A; Banecki B; Wall D; Liberek K; Georgopoulos C; Zylicz M J Biol Chem; 1995 Aug; 270(33):19307-11. PubMed ID: 7642606 [TBL] [Abstract][Full Text] [Related]
19. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372 [TBL] [Abstract][Full Text] [Related]
20. Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. Uchida T; Kanemori M J Biochem; 2018 Aug; 164(2):153-163. PubMed ID: 29635480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]