These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22733411)

  • 41. 13C NMR analysis of biologically produced pyrene residues by Mycobacterium sp. KMS in the presence of humic acid.
    Nieman JK; Holz RC; Sims RC
    Environ Sci Technol; 2007 Jan; 41(1):242-9. PubMed ID: 17265954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiology of Geobacter metallireducens under excess and limitation of electron donors. Part I. Batch cultivation with excess of carbon sources.
    Marozava S; Röling WF; Seifert J; Küffner R; von Bergen M; Meckenstock RU
    Syst Appl Microbiol; 2014 Jun; 37(4):277-86. PubMed ID: 24731775
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB.
    Valderrama JA; Shingler V; Carmona M; Díaz E
    J Biol Chem; 2014 Jan; 289(4):1892-904. PubMed ID: 24302740
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Repression of phenol catabolism by organic acids in Ralstonia eutropha.
    Ampe F; Léonard D; Lindley ND
    Appl Environ Microbiol; 1998 Jan; 64(1):1-6. PubMed ID: 9435054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of trans- and cis-control elements involved in regulation of the carbon monoxide dehydrogenase genes in Mycobacterium sp. strain JC1 DSM 3803.
    Oh JI; Park SJ; Shin SJ; Ko IJ; Han SJ; Park SW; Song T; Kim YM
    J Bacteriol; 2010 Aug; 192(15):3925-33. PubMed ID: 20511503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB.
    Durante-Rodríguez G; Zamarro MT; García JL; Díaz E; Carmona M
    Microbiology (Reading); 2008 Jan; 154(Pt 1):306-316. PubMed ID: 18174149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes.
    Elyamine AM; Kan J; Meng S; Tao P; Wang H; Hu Z
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360967
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of a putative cyclic amp receptor protein (CRP)-like binding sequence and a CRP-like protein in glucose-mediated catabolite repression of thn genes in Rhodococcus sp. strain TFB.
    Tomás-Gallardo L; Santero E; Floriano B
    Appl Environ Microbiol; 2012 Aug; 78(15):5460-2. PubMed ID: 22636000
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of Acinetobacter baylyi Crc in catabolite repression of enzymes for aromatic compound catabolism.
    Zimmermann T; Sorg T; Siehler SY; Gerischer U
    J Bacteriol; 2009 Apr; 191(8):2834-42. PubMed ID: 19201803
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A unique global metabolic trait of
    Dhamale T; Saha BK; Papade SE; Singh S; Phale PS
    Microbiology (Reading); 2022 Aug; 168(8):. PubMed ID: 35925665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of fructose uptake and catabolism by succinate in Azospirillum brasilense.
    Mukherjee A; Ghosh S
    J Bacteriol; 1987 Sep; 169(9):4361-7. PubMed ID: 2957360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products.
    Heitkamp MA; Freeman JP; Miller DW; Cerniglia CE
    Appl Environ Microbiol; 1988 Oct; 54(10):2556-65. PubMed ID: 3202634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a transcriptional repressor involved in benzoate metabolism in Geobacter bemidjiensis.
    Ueki T
    Appl Environ Microbiol; 2011 Oct; 77(19):7058-62. PubMed ID: 21821763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of inhibition and repression on the utilization of substrates by heterogeneous bacterial communities.
    Stumm-Zollinger E
    Appl Microbiol; 1966 Jul; 14(4):654-64. PubMed ID: 5927046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum.
    Li X; Cai F; Luan T; Lin L; Chen B
    Sci Total Environ; 2019 Nov; 689():287-294. PubMed ID: 31276996
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of pyrene at low defined oxygen concentrations by a Mycobacterium sp.
    Fritzsche C
    Appl Environ Microbiol; 1994 May; 60(5):1687-9. PubMed ID: 8017949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative 1H-NMR analysis reveals steric and electronic effects on the substrate specificity of benzoate dioxygenase in Ralstonia eutropha B9.
    Bent JS; Clark ZT; Collins JA
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259264
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Some puzzles about carbon catabolite repression in yeast.
    Wills C
    Res Microbiol; 1996; 147(6-7):566-72. PubMed ID: 9084771
    [No Abstract]   [Full Text] [Related]  

  • 59. Toxic pyrene metabolism in Mycobacterium gilvum PYR-GCK results in the expression of mammalian cell entry genes as revealed by transcriptomics study.
    Badejo AC; Chung WH; Kim NS; Kim SK; Chai JC; Lee YS; Jung KH; Kim HJ; Chai YG
    J Microbiol Biotechnol; 2014 Sep; 24(9):1170-7. PubMed ID: 24912554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. To Benzoate or Not To Benzoate: Cats are the Question.
    Davidson G
    Int J Pharm Compd; 2001; 5(2):89-90. PubMed ID: 23981827
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.