These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 22733443)

  • 1. Genomic prediction of hybrid performance in maize with models incorporating dominance and population specific marker effects.
    Technow F; Riedelsheimer C; Schrag TA; Melchinger AE
    Theor Appl Genet; 2012 Oct; 125(6):1181-94. PubMed ID: 22733443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
    Technow F; Schrag TA; Schipprack W; Bauer E; Simianer H; Melchinger AE
    Genetics; 2014 Aug; 197(4):1343-55. PubMed ID: 24850820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of Genomic Prediction in Synthetic Populations Depending on the Number of Parents, Relatedness, and Ancestral Linkage Disequilibrium.
    Schopp P; Müller D; Technow F; Melchinger AE
    Genetics; 2017 Jan; 205(1):441-454. PubMed ID: 28049710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs.
    Seye AI; Bauland C; Charcosset A; Moreau L
    Theor Appl Genet; 2020 Jun; 133(6):1995-2010. PubMed ID: 32185420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield.
    Schrag TA; Maurer HP; Melchinger AE; Piepho HP; Peleman J; Frisch M
    Theor Appl Genet; 2007 May; 114(8):1345-55. PubMed ID: 17323040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (
    Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L
    Genetics; 2017 Nov; 207(3):1167-1180. PubMed ID: 28971957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.
    Schrag TA; Melchinger AE; Sørensen AP; Frisch M
    Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction.
    Lehermeier C; Krämer N; Bauer E; Bauland C; Camisan C; Campo L; Flament P; Melchinger AE; Menz M; Meyer N; Moreau L; Moreno-González J; Ouzunova M; Pausch H; Ranc N; Schipprack W; Schönleben M; Walter H; Charcosset A; Schön CC
    Genetics; 2014 Sep; 198(1):3-16. PubMed ID: 25236445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups of maize.
    Giraud H; Lehermeier C; Bauer E; Falque M; Segura V; Bauland C; Camisan C; Campo L; Meyer N; Ranc N; Schipprack W; Flament P; Melchinger AE; Menz M; Moreno-González J; Ouzunova M; Charcosset A; Schön CC; Moreau L
    Genetics; 2014 Dec; 198(4):1717-34. PubMed ID: 25271305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of recombination in the parent populations on the means and combining ability variances in hybrid populations of maize ( Zea mays L.).
    Melchinger AE; Geiger HH; Utz HF; Schnell FW
    Theor Appl Genet; 2003 Jan; 106(2):332-40. PubMed ID: 12582860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkage Analysis and Association Mapping QTL Detection Models for Hybrids Between Multiparental Populations from Two Heterotic Groups: Application to Biomass Production in Maize (
    Giraud H; Bauland C; Falque M; Madur D; Combes V; Jamin P; Monteil C; Laborde J; Palaffre C; Gaillard A; Blanchard P; Charcosset A; Moreau L
    G3 (Bethesda); 2017 Nov; 7(11):3649-3657. PubMed ID: 28963164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize.
    Ramstein GP; Larsson SJ; Cook JP; Edwards JW; Ersoz ES; Flint-Garcia S; Gardner CA; Holland JB; Lorenz AJ; McMullen MD; Millard MJ; Rocheford TR; Tuinstra MR; Bradbury PJ; Buckler ES; Romay MC
    Genetics; 2020 May; 215(1):215-230. PubMed ID: 32152047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accounting for Group-Specific Allele Effects and Admixture in Genomic Predictions: Theory and Experimental Evaluation in Maize.
    Rio S; Moreau L; Charcosset A; Mary-Huard T
    Genetics; 2020 Sep; 216(1):27-41. PubMed ID: 32680885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.
    Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM
    Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
    Unterseer S; Pophaly SD; Peis R; Westermeier P; Mayer M; Seidel MA; Haberer G; Mayer KF; Ordas B; Pausch H; Tellier A; Bauer E; Schön CC
    Genome Biol; 2016 Jul; 17(1):137. PubMed ID: 27387028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds.
    Schrag TA; Möhring J; Melchinger AE; Kusterer B; Dhillon BS; Piepho HP; Frisch M
    Theor Appl Genet; 2010 Jan; 120(2):451-61. PubMed ID: 19916002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical and deterministic accuracies of across-population genomic prediction.
    Wientjes YC; Veerkamp RF; Bijma P; Bovenhuis H; Schrooten C; Calus MP
    Genet Sel Evol; 2015 Feb; 47(1):5. PubMed ID: 25885467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using markers with large effect in genetic and genomic predictions.
    Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW
    J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.