BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22733630)

  • 21. Enhancing response of a protein conformational switch by using two disordered ligand binding domains.
    Sekhon H; Ha JH; Loh SN
    Front Mol Biosci; 2023; 10():1114756. PubMed ID: 36936990
    [No Abstract]   [Full Text] [Related]  

  • 22. High torsional energy disulfides: relationship between cross-strand disulfides and right-handed staples.
    Haworth NL; Feng LL; Wouters MA
    J Bioinform Comput Biol; 2006 Feb; 4(1):155-68. PubMed ID: 16568548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing out disulfide bonds of leech carboxypeptidase inhibitor: implications for its folding, stability and function.
    Arolas JL; Castillo V; Bronsoms S; Aviles FX; Ventura S
    J Mol Biol; 2009 Sep; 392(2):529-46. PubMed ID: 19559710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fragment reconstitution of a small protein: disulfide mutant of a short C-terminal fragment derived from streptococcal protein G.
    Kobayashi N; Honda S; Munekata E
    Biochemistry; 1999 Mar; 38(11):3228-34. PubMed ID: 10079065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allosteric switching by mutually exclusive folding of protein domains.
    Radley TL; Markowska AI; Bettinger BT; Ha JH; Loh SN
    J Mol Biol; 2003 Sep; 332(3):529-36. PubMed ID: 12963365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.
    Garcia TI; Oberhauser AF; Braun W
    Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase.
    Buey RM; Arellano JB; López-Maury L; Galindo-Trigo S; Velázquez-Campoy A; Revuelta JL; de Pereda JM; Florencio FJ; Schürmann P; Buchanan BB; Balsera M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12725-12730. PubMed ID: 29133410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension.
    Zhang B; Xu G; Evans JS
    Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Point mutations alter the mechanical stability of immunoglobulin modules.
    Li H; Carrion-Vazquez M; Oberhauser AF; Marszalek PE; Fernandez JM
    Nat Struct Biol; 2000 Dec; 7(12):1117-20. PubMed ID: 11101892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Titins in C.elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions.
    Flaherty DB; Gernert KM; Shmeleva N; Tang X; Mercer KB; Borodovsky M; Benian GM
    J Mol Biol; 2002 Oct; 323(3):533-49. PubMed ID: 12381307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E
    EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.
    Won HS; Low LY; Guzman RD; Martinez-Yamout M; Jakob U; Dyson HJ
    J Mol Biol; 2004 Aug; 341(4):893-9. PubMed ID: 15328602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment.
    Yi MC; Khosla C
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():197-222. PubMed ID: 27023663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules.
    Talay SR; Grammel MP; Chhatwal GS
    Biochem J; 1996 Apr; 315 ( Pt 2)(Pt 2):577-82. PubMed ID: 8615832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability and folding rates of domains spanning the large A-band super-repeat of titin.
    Head JG; Houmeida A; Knight PJ; Clarke AR; Trinick J; Brady RL
    Biophys J; 2001 Sep; 81(3):1570-9. PubMed ID: 11509370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of core destabilization on the mechanical resistance of I27.
    Brockwell DJ; Beddard GS; Clarkson J; Zinober RC; Blake AW; Trinick J; Olmsted PD; Smith DA; Radford SE
    Biophys J; 2002 Jul; 83(1):458-72. PubMed ID: 12080133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis of the head-to-tail assembly of giant muscle proteins obscurin-like 1 and titin.
    Sauer F; Vahokoski J; Song YH; Wilmanns M
    EMBO Rep; 2010 Jul; 11(7):534-40. PubMed ID: 20489725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The different folding behavior of insulin and insulin-like growth factor 1 is mainly controlled by their B-chain/domain.
    Guo ZY; Shen L; Feng YM
    Biochemistry; 2002 Feb; 41(5):1556-67. PubMed ID: 11814349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic protein self-assembly driven by host-guest chemistry and the folding-unfolding feature of a mutually exclusive protein.
    Wang R; Qiao S; Zhao L; Hou C; Li X; Liu Y; Luo Q; Xu J; Li H; Liu J
    Chem Commun (Camb); 2017 Sep; 53(76):10532-10535. PubMed ID: 28890970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic strength of titin's Z-disk end.
    Kollár V; Szatmári D; Grama L; Kellermayer MS
    J Biomed Biotechnol; 2010; 2010():838530. PubMed ID: 20414364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.