These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22733630)

  • 41. Improvement of single domain antibody stability by disulfide bond introduction.
    Hagihara Y; Saerens D
    Methods Mol Biol; 2012; 911():399-416. PubMed ID: 22886265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore.
    Jacquez P; Avila G; Boone K; Altiyev A; Puschhof J; Sauter R; Arigi E; Ruiz B; Peng X; Almeida I; Sherman M; Xiao C; Sun J
    PLoS One; 2015; 10(6):e0130832. PubMed ID: 26107617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural basis of the redox switch in the OxyR transcription factor.
    Choi H; Kim S; Mukhopadhyay P; Cho S; Woo J; Storz G; Ryu SE
    Cell; 2001 Apr; 105(1):103-13. PubMed ID: 11301006
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The super-repeats of titin/connectin and their interactions: glimpses at sarcomeric assembly.
    Gautel M
    Adv Biophys; 1996; 33():27-37. PubMed ID: 8922100
    [No Abstract]   [Full Text] [Related]  

  • 45. How the disulfide conformation determines the disulfide/thiol redox potential.
    Roos G; Fonseca Guerra C; Bickelhaupt FM
    J Biomol Struct Dyn; 2015; 33(1):93-103. PubMed ID: 24256142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of a short connecting disulfide bond in the stability and function of psychrophilic Shewanella violacea cytochrome c (5).
    Ogawa K; Sonoyama T; Takeda T; Ichiki S; Nakamura S; Kobayashi Y; Uchiyama S; Nakasone K; Takayama SJ; Mita H; Yamamoto Y; Sambongi Y
    Extremophiles; 2007 Nov; 11(6):797-807. PubMed ID: 17657404
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanical hierarchies of fibronectin observed with single-molecule AFM.
    Oberhauser AF; Badilla-Fernandez C; Carrion-Vazquez M; Fernandez JM
    J Mol Biol; 2002 May; 319(2):433-47. PubMed ID: 12051919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hidden complexity in the mechanical properties of titin.
    Williams PM; Fowler SB; Best RB; Toca-Herrera JL; Scott KA; Steward A; Clarke J
    Nature; 2003 Mar; 422(6930):446-9. PubMed ID: 12660787
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proof of principle in a de novo designed protein maquette: an allosterically regulated, charge-activated conformational switch in a tetra-alpha-helix bundle.
    Grosset AM; Gibney BR; Rabanal F; Moser CC; Dutton PL
    Biochemistry; 2001 May; 40(18):5474-87. PubMed ID: 11331012
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy.
    Li H; Fernandez JM
    J Mol Biol; 2003 Nov; 334(1):75-86. PubMed ID: 14596801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intrabody construction and expression. II. A synthetic catalytic Fv fragment.
    Ohage EC; Wirtz P; Barnikow J; Steipe B
    J Mol Biol; 1999 Sep; 291(5):1129-34. PubMed ID: 10518948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A single-molecule assay to directly identify solvent-accessible disulfide bonds and probe their effect on protein folding.
    Ainavarapu SR; Wiita AP; Huang HH; Fernandez JM
    J Am Chem Soc; 2008 Jan; 130(2):436-7. PubMed ID: 18088123
    [No Abstract]   [Full Text] [Related]  

  • 53. Intermolecular disulfide bond to modulate protein function as a redox-sensing switch.
    Nagahara N
    Amino Acids; 2011 Jun; 41(1):59-72. PubMed ID: 20177947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Velocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality.
    Harris NC; Kiang CH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041912. PubMed ID: 19518261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disulfide bonds and protein folding.
    Wedemeyer WJ; Welker E; Narayan M; Scheraga HA
    Biochemistry; 2000 Apr; 39(15):4207-16. PubMed ID: 10757967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic genetics of the folding of the B1 immunoglobulin-binding domain from streptococcal protein G.
    O'Neil KT; Hoess RH; Raleigh DP; DeGrado WF
    Proteins; 1995 Jan; 21(1):11-21. PubMed ID: 7716165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The folding and stability of titin immunoglobulin-like modules, with implications for the mechanism of elasticity.
    Politou AS; Thomas DJ; Pastore A
    Biophys J; 1995 Dec; 69(6):2601-10. PubMed ID: 8599667
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folding and oxidation of the antibody domain C(H)3.
    Thies MJ; Talamo F; Mayer M; Bell S; Ruoppolo M; Marino G; Buchner J
    J Mol Biol; 2002 Jun; 319(5):1267-77. PubMed ID: 12079363
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frustration in the energy landscapes of multidomain protein misfolding.
    Zheng W; Schafer NP; Wolynes PG
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1680-5. PubMed ID: 23319605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.
    Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J
    J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.