These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 22733647)
1. Use of the novel technique of analytical ultracentrifugation with fluorescence detection system identifies a 77S monosomal translation complex. Wang X; Zhang C; Chiang YC; Toomey S; Power MP; Granoff ME; Richardson R; Xi W; Lee DJ; Chase S; Laue TM; Denis CL Protein Sci; 2012 Sep; 21(9):1253-68. PubMed ID: 22733647 [TBL] [Abstract][Full Text] [Related]
2. Defining the protein complexome of translation termination factor eRF1: Identification of four novel eRF1-containing complexes that range from 20S to 57S in size. Denis CL; Richardson R; Park S; Zhang C; Xi W; Laue TM; Wang X Proteins; 2018 Feb; 86(2):177-191. PubMed ID: 29139201 [TBL] [Abstract][Full Text] [Related]
3. Only a subset of the PAB1-mRNP proteome is present in mRNA translation complexes. Zhang C; Wang X; Park S; Chiang YC; Xi W; Laue TM; Denis CL Protein Sci; 2014 Aug; 23(8):1036-49. PubMed ID: 24838188 [TBL] [Abstract][Full Text] [Related]
4. Probing the closed-loop model of mRNA translation in living cells. Archer SK; Shirokikh NE; Hallwirth CV; Beilharz TH; Preiss T RNA Biol; 2015; 12(3):248-54. PubMed ID: 25826658 [TBL] [Abstract][Full Text] [Related]
5. Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit. Denis CL; Laue TM; Wang X Sci Rep; 2018 Jul; 8(1):11468. PubMed ID: 30065356 [TBL] [Abstract][Full Text] [Related]
6. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation. Wang X; Xi W; Toomey S; Chiang YC; Hasek J; Laue TM; Denis CL PLoS One; 2016; 11(3):e0150616. PubMed ID: 26953568 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Brengues M; Parker R Mol Biol Cell; 2007 Jul; 18(7):2592-602. PubMed ID: 17475768 [TBL] [Abstract][Full Text] [Related]
8. eIF4F is a thermo-sensing regulatory node in the translational heat shock response. Desroches Altamirano C; Kang MK; Jordan MA; Borianne T; Dilmen I; Gnädig M; von Appen A; Honigmann A; Franzmann TM; Alberti S Mol Cell; 2024 May; 84(9):1727-1741.e12. PubMed ID: 38547866 [TBL] [Abstract][Full Text] [Related]
9. The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. Castelli LM; Talavera D; Kershaw CJ; Mohammad-Qureshi SS; Costello JL; Rowe W; Sims PF; Grant CM; Hubbard SJ; Ashe MP; Pavitt GD PLoS Genet; 2015 May; 11(5):e1005233. PubMed ID: 25973932 [TBL] [Abstract][Full Text] [Related]
10. Binding of eukaryotic translation initiation factor 4E (eIF4E) to eIF4G represses translation of uncapped mRNA. Tarun SZ; Sachs AB Mol Cell Biol; 1997 Dec; 17(12):6876-86. PubMed ID: 9372919 [TBL] [Abstract][Full Text] [Related]
11. Dynamic recognition of the mRNA cap by Saccharomyces cerevisiae eIF4E. O'Leary SE; Petrov A; Chen J; Puglisi JD Structure; 2013 Dec; 21(12):2197-207. PubMed ID: 24183571 [TBL] [Abstract][Full Text] [Related]
12. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. Altmann M; Schmitz N; Berset C; Trachsel H EMBO J; 1997 Mar; 16(5):1114-21. PubMed ID: 9118949 [TBL] [Abstract][Full Text] [Related]
13. The histone 3'-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Ling J; Morley SJ; Pain VM; Marzluff WF; Gallie DR Mol Cell Biol; 2002 Nov; 22(22):7853-67. PubMed ID: 12391154 [TBL] [Abstract][Full Text] [Related]
14. Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast. Grüner S; Weber R; Peter D; Chung MY; Igreja C; Valkov E; Izaurralde E Nucleic Acids Res; 2018 Jul; 46(13):6893-6908. PubMed ID: 30053226 [TBL] [Abstract][Full Text] [Related]
15. Cap-independent translation is required for starvation-induced differentiation in yeast. Gilbert WV; Zhou K; Butler TK; Doudna JA Science; 2007 Aug; 317(5842):1224-7. PubMed ID: 17761883 [TBL] [Abstract][Full Text] [Related]
16. Translation factors promote the formation of two states of the closed-loop mRNP. Amrani N; Ghosh S; Mangus DA; Jacobson A Nature; 2008 Jun; 453(7199):1276-80. PubMed ID: 18496529 [TBL] [Abstract][Full Text] [Related]
17. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Gao Q; Das B; Sherman F; Maquat LE Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4258-63. PubMed ID: 15753296 [TBL] [Abstract][Full Text] [Related]
18. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20. Ptushkina M; von der Haar T; Vasilescu S; Frank R; Birkenhäger R; McCarthy JE EMBO J; 1998 Aug; 17(16):4798-808. PubMed ID: 9707439 [TBL] [Abstract][Full Text] [Related]
19. PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure. Lee D; Ohn T; Chiang YC; Quigley G; Yao G; Liu Y; Denis CL J Mol Biol; 2010 Jun; 399(4):562-75. PubMed ID: 20435044 [TBL] [Abstract][Full Text] [Related]
20. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]