These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 22733658)
1. The hyperaemic response to passive leg movement is dependent on nitric oxide: a new tool to evaluate endothelial nitric oxide function. Mortensen SP; Askew CD; Walker M; Nyberg M; Hellsten Y J Physiol; 2012 Sep; 590(17):4391-400. PubMed ID: 22733658 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide and passive limb movement: a new approach to assess vascular function. Trinity JD; Groot HJ; Layec G; Rossman MJ; Ives SJ; Runnels S; Gmelch B; Bledsoe A; Richardson RS J Physiol; 2012 Mar; 590(6):1413-25. PubMed ID: 22310310 [TBL] [Abstract][Full Text] [Related]
3. The role of nitric oxide in passive leg movement-induced vasodilatation with age: insight from alterations in femoral perfusion pressure. Groot HJ; Trinity JD; Layec G; Rossman MJ; Ives SJ; Morgan DE; Bledsoe A; Richardson RS J Physiol; 2015 Sep; 593(17):3917-28. PubMed ID: 26108562 [TBL] [Abstract][Full Text] [Related]
4. Contribution of nitric oxide to reactive hyperemia: impact of endothelial dysfunction. Dakak N; Husain S; Mulcahy D; Andrews NP; Panza JA; Waclawiw M; Schenke W; Quyyumi AA Hypertension; 1998 Jul; 32(1):9-15. PubMed ID: 9674631 [TBL] [Abstract][Full Text] [Related]
5. The role of the endothelium in the hyperemic response to passive leg movement: looking beyond nitric oxide. Trinity JD; Kwon OS; Broxterman RM; Gifford JR; Kithas AC; Hydren JR; Jarrett CL; Shields KL; Bisconti AV; Park SH; Craig JC; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H668-H678. PubMed ID: 33306447 [TBL] [Abstract][Full Text] [Related]
6. Single passive leg movement assessment of vascular function: contribution of nitric oxide. Broxterman RM; Trinity JD; Gifford JR; Kwon OS; Kithas AC; Hydren JR; Nelson AD; Morgan DE; Jessop JE; Bledsoe AD; Richardson RS J Appl Physiol (1985); 2017 Dec; 123(6):1468-1476. PubMed ID: 28860173 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood flow and aerobic energy turnover in the exercising human leg. Mortensen SP; González-Alonso J; Damsgaard R; Saltin B; Hellsten Y J Physiol; 2007 Jun; 581(Pt 2):853-61. PubMed ID: 17347273 [TBL] [Abstract][Full Text] [Related]
8. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095 [TBL] [Abstract][Full Text] [Related]
9. Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults. Eisenach JH; Gullixson LR; Kost SL; Joyner MJ; Turner ST; Nicholson WT J Appl Physiol (1985); 2012 Mar; 112(6):1049-53. PubMed ID: 22194324 [TBL] [Abstract][Full Text] [Related]
10. Perfusion pressure and movement-induced hyperemia: evidence of limited vascular function and vasodilatory reserve with age. Groot HJ; Trinity JD; Layec G; Rossman MJ; Ives SJ; Richardson RS Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H610-9. PubMed ID: 23262136 [TBL] [Abstract][Full Text] [Related]
12. Role of nitric oxide and prostanoids in the regulation of leg blood flow and blood pressure in humans with essential hypertension: effect of high-intensity aerobic training. Nyberg M; Jensen LG; Thaning P; Hellsten Y; Mortensen SP J Physiol; 2012 Mar; 590(6):1481-94. PubMed ID: 22271868 [TBL] [Abstract][Full Text] [Related]
13. Vasoactive enzymes and blood flow responses to passive and active exercise in peripheral arterial disease. Walker MA; Hoier B; Walker PJ; Schulze K; Bangsbo J; Hellsten Y; Askew CD Atherosclerosis; 2016 Mar; 246():98-105. PubMed ID: 26771386 [TBL] [Abstract][Full Text] [Related]
14. Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. Mortensen SP; Nyberg M; Thaning P; Saltin B; Hellsten Y Hypertension; 2009 Jun; 53(6):993-9. PubMed ID: 19433775 [TBL] [Abstract][Full Text] [Related]
15. [Role of endothelium-derived nitric oxide in sustained flow-dependent dilatation of human peripheral conduit arteries]. Bellien J; Joannidès R; Iacob M; Eltchaninoff H; Thuillez Ch Arch Mal Coeur Vaiss; 2003; 96(7-8):738-41. PubMed ID: 12945214 [TBL] [Abstract][Full Text] [Related]
16. Passive leg movement and nitric oxide-mediated vascular function: the impact of age. Trinity JD; Groot HJ; Layec G; Rossman MJ; Ives SJ; Morgan DE; Gmelch BS; Bledsoe A; Richardson RS Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H672-9. PubMed ID: 25576629 [TBL] [Abstract][Full Text] [Related]
17. An inhibitor of inducible nitric oxide synthase decreases forearm blood flow in patients with congestive heart failure. Ishibashi Y; Shimada T; Murakami Y; Takahashi N; Sakane T; Sugamori T; Ohata S; Inoue S; Ohta Y; Nakamura K; Shimizu H; Katoh H; Hashimoto M J Am Coll Cardiol; 2001 Nov; 38(5):1470-6. PubMed ID: 11691525 [TBL] [Abstract][Full Text] [Related]
18. Flow-mediated dilation of the radial artery is offset by flow-induced reduction in transmural pressure. Jiang B; Seddon M; Fok H; Donald A; Chowienczyk P Hypertension; 2011 Jun; 57(6):1145-50. PubMed ID: 21502570 [TBL] [Abstract][Full Text] [Related]
19. Impaired nitric oxide-mediated vasodilatation and total body nitric oxide production in healthy old age. Lyons D; Roy S; Patel M; Benjamin N; Swift CG Clin Sci (Lond); 1997 Dec; 93(6):519-25. PubMed ID: 9497788 [TBL] [Abstract][Full Text] [Related]
20. The contribution of nitric oxide to exercise hyperemia in the human forearm. Gordon MB; Jain R; Beckman JA; Creager MA Vasc Med; 2002 Aug; 7(3):163-8. PubMed ID: 12553738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]