These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 22733706)

  • 21. Human polymer-based cartilage grafts for the regeneration of articular cartilage defects.
    Endres M; Neumann K; Schröder SE; Vetterlein S; Morawietz L; Ringe J; Sittinger M; Kaps C
    Tissue Cell; 2007 Oct; 39(5):293-301. PubMed ID: 17688898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression.
    Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B
    Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects.
    Vinatier C; Gauthier O; Fatimi A; Merceron C; Masson M; Moreau A; Moreau F; Fellah B; Weiss P; Guicheux J
    Biotechnol Bioeng; 2009 Mar; 102(4):1259-67. PubMed ID: 18949749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.
    Radhakrishnan J; Subramanian A; Sethuraman S
    Carbohydr Polym; 2017 Nov; 175():63-74. PubMed ID: 28917911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Platelet-rich plasma combined with agarose as a bioactive scaffold to enhance cartilage repair: an in vitro study.
    Yin Z; Yang X; Jiang Y; Xing L; Xu Y; Lu Y; Ding P; Ma J; Xu Y; Gui J
    J Biomater Appl; 2014 Mar; 28(7):1039-50. PubMed ID: 23828781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Photoannealed Granular Hydrogel Facilitating Hyaline Cartilage Regeneration via Improving Chondrogenic Phenotype.
    Zhu Y; Sun Y; Rui B; Lin J; Shen J; Xiao H; Liu X; Chai Y; Xu J; Yang Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40674-40687. PubMed ID: 36052731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold.
    Wang CC; Yang KC; Lin KH; Liu YL; Liu HC; Lin FH
    Biomaterials; 2012 Jan; 33(1):120-7. PubMed ID: 21982587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model.
    Lee CR; Grodzinsky AJ; Hsu HP; Spector M
    J Orthop Res; 2003 Mar; 21(2):272-81. PubMed ID: 12568959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials.
    Yamaoka H; Asato H; Ogasawara T; Nishizawa S; Takahashi T; Nakatsuka T; Koshima I; Nakamura K; Kawaguchi H; Chung UI; Takato T; Hoshi K
    J Biomed Mater Res A; 2006 Jul; 78(1):1-11. PubMed ID: 16596585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Culture of chondrocytes in fibroin-hydrogel sponge.
    Aoki H; Tomita N; Morita Y; Hattori K; Harada Y; Sonobe M; Wakitani S; Tamada Y
    Biomed Mater Eng; 2003; 13(4):309-16. PubMed ID: 14646046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support.
    Ruszymah BH; Chua K; Latif MA; Hussein FN; Saim AB
    Int J Pediatr Otorhinolaryngol; 2005 Nov; 69(11):1489-95. PubMed ID: 15941595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro.
    Liu J; Song H; Zhang L; Xu H; Zhao X
    Macromol Biosci; 2010 Oct; 10(10):1164-70. PubMed ID: 20552605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression.
    Galois L; Hutasse S; Cortial D; Rousseau CF; Grossin L; Ronziere MC; Herbage D; Freyria AM
    Biomaterials; 2006 Jan; 27(1):79-90. PubMed ID: 16026827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: An in vitro study.
    Mohan N; Wilson J; Joseph D; Vaikkath D; Nair PD
    J Biomed Mater Res A; 2015 Dec; 103(12):3896-906. PubMed ID: 26014103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration.
    Singh BN; Nallakumarasamy A; Sinha S; Rastogi A; Mallick SP; Divakar S; Srivastava P
    Int J Biol Macromol; 2022 Apr; 203():389-405. PubMed ID: 35063489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of platelet-rich plasma gel and hyaluronan hydrogel as carriers of electrically polarized hydroxyapatite microgranules for accelerating bone formation.
    Ohba S; Wang W; Itoh S; Takagi Y; Nagai A; Yamashita K
    J Biomed Mater Res A; 2012 Nov; 100(11):3167-76. PubMed ID: 22847859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification.
    Woodfield TB; Miot S; Martin I; van Blitterswijk CA; Riesle J
    Biomaterials; 2006 Mar; 27(7):1043-53. PubMed ID: 16125219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.