BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22733773)

  • 1. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast.
    Petersen J; Förster K; Turina P; Gräber P
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11150-5. PubMed ID: 22733773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli.
    Steigmiller S; Turina P; Gräber P
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):3745-50. PubMed ID: 18316723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes.
    Turina P; Samoray D; Gräber P
    EMBO J; 2003 Feb; 22(3):418-26. PubMed ID: 12554643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of proton transport coupled ATP synthesis.
    Turina P; Petersen J; Gräber P
    Biochim Biophys Acta; 2016 Jun; 1857(6):653-64. PubMed ID: 26940516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases.
    Wiedenmann A; Dimroth P; von Ballmoos C
    Biochim Biophys Acta; 2008 Oct; 1777(10):1301-10. PubMed ID: 18619941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton transport coupled ATP synthesis by the purified yeast H+ -ATP synthase in proteoliposomes.
    Förster K; Turina P; Drepper F; Haehnel W; Fischer S; Gräber P; Petersen J
    Biochim Biophys Acta; 2010 Nov; 1797(11):1828-37. PubMed ID: 20691145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The H+-ATPase from chloroplasts: effect of different reconstitution procedures on ATP synthesis activity and on phosphate dependence of ATP synthesis.
    Grotjohann I; Gräber P
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):208-16. PubMed ID: 12460678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent modification of the non-catalytic sites of the H(+)-ATPase from chloroplasts with 2-azido-[alpha-(32)P]ATP and its effect on ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):378-400. PubMed ID: 11342174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of DeltapH- and Delta***φ***-driven ATP synthesis catalyzed by the H(+)-ATPases from Escherichia coli or chloroplasts reconstituted into liposomes.
    Fischer S; Gräber P
    FEBS Lett; 1999 Sep; 457(3):327-32. PubMed ID: 10471802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent FRET with single enzymes: domain motions and catalysis in H(+)-ATP synthases.
    Bienert R; Zimmermann B; Rombach-Riegraf V; Gräber P
    Chemphyschem; 2011 Feb; 12(3):510-7. PubMed ID: 21287678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory interplay between proton motive force, ADP, phosphate, and subunit epsilon in bacterial ATP synthase.
    Feniouk BA; Suzuki T; Yoshida M
    J Biol Chem; 2007 Jan; 282(1):764-72. PubMed ID: 17092944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.
    Singh D; Sielaff H; Sundararaman L; Bhushan S; Grüber G
    Biochim Biophys Acta; 2016 Feb; 1857(2):177-187. PubMed ID: 26682760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Rhodospirillum rubrum F(0)F(1) ATP synthases containing spinach chloroplast F(1) beta or alpha and beta subunits reveal the essential role of the alpha subunit in ATP synthesis and tentoxin sensitivity.
    Tucker WC; Du Z; Hein R; Richter ML; Gromet-Elhanan Z
    J Biol Chem; 2000 Jan; 275(2):906-12. PubMed ID: 10625626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM of ATP synthases.
    Guo H; Rubinstein JL
    Curr Opin Struct Biol; 2018 Oct; 52():71-79. PubMed ID: 30240940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfect chemomechanical coupling of F
    Soga N; Kimura K; Kinosita K; Yoshida M; Suzuki T
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4960-4965. PubMed ID: 28442567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments.
    Varco-Merth B; Fromme R; Wang M; Fromme P
    Biochim Biophys Acta; 2008; 1777(7-8):605-12. PubMed ID: 18515064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.